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Future developments in biosensors
for field-ready Zika virus diagnostics
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Abstract

Since early reports of the recent Zika virus outbreak in May 2015, much has been learned and discussed regarding
Zika virus infection and transmission. However, many opportunities still remain for translating these findings into
field-ready sensors and diagnostics. In this brief review, we discuss current diagnostic methods, consider the
prospects of translating other flavivirus biosensors directly to Zika virus sensing, and look toward the future
developments needed for high-sensitivity and high-specificity biosensors to come.
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Background
Amidst the recent Zika epidemic, rising public health con-
cerns have led to extensive research aimed at uncovering
the underlying mechanisms of Zika virus (ZIKV) infection
and transmission pathways [1–3]. According to the Pan
American Health Organization (PAHO), autochthonous
ZIKV cases in the Americas increased from virtually none
in early 2015 to over 170,000 confirmed and 515,000
suspected cases by December 2016 [4]. This escalation has
led to newly abundant clinical, epidemiological, and
virological research and funding opportunities that were
previously limited by the rarity of infection and limited
concerns for ZIKV as an infectious agent (Fig. 1). Interest-
ingly, research aimed at developing novel ZIKV sensors is
quite limited, as seen in Fig. 1. A whole arena remains
open for research, funding, and commercial opportunities.
Between its first isolation as a zoonotic pathogen in

Uganda (1947) and the first major human outbreak of
Zika on Yap Island in Micronesia (2007), ZIKV has been
primarily observed in Africa and the Pacific [5–7].
Generally, the flu-like symptoms of infection are mild
and include low to moderate fever, headache, joint pain,
rash, and fatigue [6–10]. However, the recent breadth
of epidemiological data stemming from the many thou-
sands of cases across South America, the Caribbean,

and Central and North America, has uncovered new
insights into rare and severe effects on specific subsets
of the population. These include a low risk of Guillain-
Barré syndrome in adults, and critical risks for preg-
nant women, including stillbirth, restricted intrauterine
fetal growth, and microcephaly [7, 10–14].
As a member of the Flavivirus genus, ZIKV shares many

common genetic sequences and protein structures with
other high-interest flaviviruses, including Dengue virus
(DENV), West Nile virus (WNV), yellow fever virus
(YFV), and Spondweni virus, its most similar relative [15,
16]. On a molecular level, ZIKV features a 10.7 kb single-
stranded and positive-sense RNA genome. The polypro-
tein that this genome encodes cleaves to form several
structural proteins, including the envelope (E) and mem-
brane (M) proteins, and nonstructural (NS1 and NS5)
proteins [17]. These proteins are the common focus in
immunosensing and molecular research for other flavi-
viruses [12, 13, 16–18]. Thus, despite the historically lim-
ited attention given to ZIKV in the research community,
previous work with other flaviviruses may help to inform
a rapid turnaround in future ZIKV sensing technologies
[7, 8, 15].
In the shadow of the recent epidemic, our under-

standing of ZIKV pathogenicity has expanded at both
the population level and the molecular level. Although
several benchtop methods for ZIKV detection have been
employed for emergency use, there is still a need for the
development and funding of alternative field-ready diag-
nostic tools. Prompt identification of ZIKV infection at
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the site of exposure from patient-direct samples is crit-
ical in minimizing the global spread of the virus. Dur-
ing the ongoing development and rapid expansion of
the ZIKV sensor market, target specificity and sensitiv-
ity amidst complex sample matrices are key. In this
brief review, we highlight current techniques, emergent
diagnostic methods, and considerations for developing
future field-ready biosensors.

Gold standards of ZIKV detection
The recent increase in the number of ZIKV cases, particu-
larly in the U.S., has led the U.S. Food and Drug Adminis-
tration (FDA) to issue an Emergency Use Authorization
(EUA) for several previously non-cleared or unapproved
diagnostic assays. The FDA and U.S. Centers for Disease
Control and Prevention (CDC) have recommended that
ZIKV detection in human patients be performed by re-
verse transcription quantitative real-time polymerase
chain reaction (RT-qPCR), or by serological tests using an

IgM antibody capture enzyme-linked immunosorbent
assay (MAC-ELISA) or a plaque-reduction neutralization
test (PRNT) (Fig. 2) [19].
For asymptomatic pregnant women who have trav-

eled to high-risk areas for ZIKV and for symptomatic
individuals within the first 2 weeks of symptom onset,
the preferred detection method authorized by the FDA
EUA is the Trioplex RT-qPCR assay, which is specific
to DENV, Chikungunya virus (CHIKV), and ZIKV. In
RT-qPCR, a patient sample is added to a buffered re-
agent solution containing target primers, reverse tran-
scriptase (to generate cDNA from viral RNA), DNA
polymerase (to amplify this cDNA), deoxynucleotides
(dNTPs), and an intercalating fluorescent dye or fluor-
escent reporter (Fig. 3a). The amplified target is then
quantified by absolute or relative fluorescence following a
given number of thermocycles, typically lasting 90–
120 min. This assay can be performed in the presence of
several sample matrices including serum, whole blood,

Fig. 1 Number of peer-reviewed publications on ZIKV related to novel sensors development, topic reviews and commentaries, molecular biology
and virology, and epidemiology or clinical evaluations of Zika cases (as of October 15, 2016). Cumulative publications are presented in 5 year increments
until 2015 and 1 year increments between 2015 and 2016 (top). Publications in 2015–2016 are also presented separately by month (bottom)
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cerebrospinal fluid, urine, and amniotic fluid [20].
Although RT-PCR is inherently very sensitive, the
possibility of false-negatives is high. Therefore, test-
ing of symptomatic patients with negative RT-PCR
results should be confirmed with alternative forms of
identification.

For later stages of ZIKV infection, antibody-based
methods can be used. Typically, neutralizing antibodies
to ZIKV develop in the human body within the first
week of symptoms and continue to remain at detectable
levels for up to 12 weeks. During this timeframe, sero-
logical assays can be performed to detect the patient’s

Fig. 2 Flow diagram of gold standard ZIKV detection by patient type and time from onset of symptoms. RT-qPCR detection is typically used in
the first 2 weeks of illness and IgM ELISA after the first 2 weeks or when RT-qPCR is negative. PRNT assay should be used as a final test if an ELISA
assay returns positive or inconclusive

Fig. 3 Assay schematics for ZIKV diagnostics by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), IgM antibody
capture enzyme-linked immunosorbent assay (MAC-ELISA), and a plaque-reduction neutralization test (PRNT). a In one-step RT-qPCR, a patient
sample is thermally cycled in a buffered reagent solution containing ZIKV primers, and the amplified target is identified by fluorescence, typically
after 40 cycles. b In MAC-ELISA, human IgM developed in response to ZIKV infection are captured and quantified though antibody interactions
and enzymatic conversion of a chromogenic substrate. c In PRNT, patient serum dilutions are mixed with live virus samples and are applied to
confluent host cells. Antibodies in infected patients neutralize the virus, leading to a reduction in observable plaques
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anti-ZIKV IgM antibodies. However, due to the epi-
demiological and molecular similarities of ZIKV to
other flaviviruses, IgM ELISA assays should be con-
ducted for the antibodies formed against ZIKV, DENV,
and CHIKV. In MAC-ELISA, a patient’s sample is
added to a well plate pre-coated with antibodies to cap-
ture human IgM (Fig. 3b). A virus-specific antigen is
then added and washed away, binding specifically to the
IgM of infected patients. Finally, an antibody specific to
this same viral target that is tagged with an enzyme (e.g.
horseradish peroxidase) is added and a chromogenic
substrate is used for quantification. Samples from infected
patients will thus elicit an optically detectible signal (e.g.
absorbance, fluorescence) that may be correlated to IgM
concentration. However, the risk of false-positives is high
for IgM and IgG assays. If ELISA testing is inconclusive or
positive, PRNT should be performed to confirm the pres-
ence of ZIKV, specifically [18].
PRNT typically serves as a secondary test to IgM

ELISA and measures the ability of a patient’s antibodies
to neutralize a specific virus. In PRNT, serial dilutions of
a patient’s serum are added to samples of a viral suspen-
sion, and each mixture is applied to a confluent host cell
culture (e.g. Vero cells) (Fig. 3c). Following incubation,
plaque forming units (PFU) are counted. If neutralizing
antibodies specific to this virus are present in the pa-
tient’s serum, the associated PFU value will be reduced,
and the antibody titer can be determined from the serial
dilutions. This method provides better sensitivity and
specificity over IgM ELISA, but requires extended time
(days), labor, materials, and therefore cost.

Developmental diagnostic methods
Outside of tests that the CDC offers, there are several
private companies selling RT-PCR, ELISA, and lateral
flow assay kits (Table 1). Many research groups have
also focused on alternative sensing modalities that re-
duce extensive sample preparation, the use of expensive
laboratory equipment, and the risks of false-positive
and false-negative results characteristic of ELISA and
PCR assays. Some of these recent research findings are
based on techniques previously used for the detection
of other flaviviruses, whereas others are novel sensors
unique to ZIKV.

Molecular detection of ZIKV nucleic acid
Reverse transcription PCR (RT-PCR) has become the
gold standard for molecular amplification and detection
of viruses because of its high selectivity and relatively
high sensitivity. Prompted by the 2007 ZIKV outbreak
in Yap State, Micronesia, several RT-PCR methods have
been developed to specifically identify a multitude of
ZIKV strains independent of other flaviviruses. Published
ZIKV-specific primer sets target highly conserved regions

of the structural membrane (M) and/or envelope (E) [21]
proteins, partial envelope (pE) [9] protein, or the non-
structural (NS1 and NS5) proteins [18, 22–25]. Detection
of ZIKV using RT-PCR has also been shown to work in
the presence of many sample matrices including plasma
[26], serum [21, 27], saliva [28], urine [27], conjunctival
fluid, and semen [29], thus reducing the need for sample
purification or extraction.
Many commercial nucleic acid amplification tests

(NAATs) have been developed for ZIKV detection within
the past year (Table 1). Between February 26, 2016 and
October 21, 2016, the FDA approved ten molecular
diagnostic tests for clinical identification of ZIKV under
the EUA [30]. Eight of these assays utilize traditional
RT-PCR or RT-qPCR amplification (conventional and
quantitative real-time thermal cycling) and detection
(gel electrophoresis or intercalating dye fluorescence in-
tensity) methods.
The following two non-traditional FDA EUA-

approved NAATs claim improved sensitivity, specificity,
usability, and speed. The xMAP® MultiFLEXTM assay
(Luminex Corp.), uses a proprietary device to complete
a series of steps, which include RT-PCR, followed by
amplicon-particle hybridization, and final detection via an
indicator molecule [31]. The other, Aptima Zika virus
assay (Hologic, Inc.), also uses a proprietary device; how-
ever, this assay is fully automated and can perform
transcription-mediated amplification (exact technique not
specified), and qualitative viral detection in the presence
of human serum, plasma, or urine, similar to the xMAP®
MultiFLEX™ assay [32]. Despite claiming ease-of-use and
rapid sample-to-answer times, both methods require ap-
proximately 3.5 h and expensive laboratory equipment,
and thus laboratory space.
In the case of epidemic diseases, extremely rapid and

low-cost screening of clinical samples in-field is necessary,
making these EUA techniques inadequate. In light of this
need, many research groups have focused on making PCR
assays field-deployable and/or field-ready [33–37]. Al-
though some have succeeded in creating full sample-to-
answer devices (Fig. 4a), PCR platforms are still limited by
their need for multi-temperature sample heating for de-
naturation, annealing and extension. Fortunately, over the
past 30 years isothermal amplification techniques with
typical amplification times of less than 1 h have been thor-
oughly described for a variety of DNA and RNA targets.
Popular forms of isothermal NAATs include nucleic acid
sequence-based amplification (NASBA), loop-mediated
isothermal amplification (LAMP), strand invasion based
amplification (SIBA), strand displacement amplification
(SDA), helicase-dependent amplification (HAD), recom-
binase polymerase amplification (RPA) and others [38].
Since the first publication by Pardee et al. in May 2016,

four groups have published research on isothermal-NAAT

Nicolini et al. Journal of Biological Engineering  (2017) 11:7 Page 4 of 9



ZIKV detection using NASBA [39], RT-LAMP [40, 41]
and RT-SIBA [42] (Table 2), several of which are still
laboratory-based. All four groups also used different
amplicon detection modalities, including toehold switch
sensors, colorimetric detection, AC susceptometry, and
gel electrophoresis. The RT-LAMP assay developed by
Song et al. is particularly noteworthy due to its self-
contained and field-ready design, which allows identifica-
tion of ZIKV in under an hour on a portable cassette for
less than $2 per assay (Fig. 4c) [40].
Of the molecular diagnostic techniques, isothermal

genomic amplification has arguably become the most
promising method for in-field pathogen identification

due to its enhanced specificity, decreased limit-of-
detection, reduced assay time, ease of amplification, and
number of end-product detection methods. Although
not all for ZIKV, several groups have already developed
low-cost devices using inexpensive insulating materials
(e.g. thermoses) [40, 43, 44] and simple heat-producing
elements [45–48], including non-electrical exothermal
reactions [43, 49, 50] (Fig. 4b,c). Many real-time nucleic
acid quantification methods have also been used, though
again not all for ZIKV, and include measurement of fluor-
escence [51], Mg+ pyrophosphate [52], electrochemical
[53], or colorimetric signal changes, detectable by the
human eye [54, 55] or optical sensors [56–58].

Table 1 Laboratory-based ZIKA assay kits

Assay technique Manufacturer Product name

ELISA Alpha Diagnostic International Recombivirus Human Anti-Zika Virus (ZIKV) Envelope protein
IgG/IgM ELISA kits

CDC aTrioplex Real-time RT-PCR Assay

CTK Biotech RecombiLISA Zika IgM ELISA kit

DIA.PRO Diagnostic Bioprobes ZIKV IgG/M ELISA kits

Euroimmun Anti-Zika Virus IgG/IgM ELISA kits

InBios International aZIKV Detect IgM Capture ELISA kit

MyBioSource Zika Virus IgM (ZV-IgM) ELISA kit

NovaTec Immundiagnostica NovaLisa Zika Virus IgM μ-capture ELISA kit

Lateral flow assay Chembio Diagnostic Systems DPP Zika IgM/IgG assay

Immunofluorescence Euroimmun Anti-Zika Virus IIFT (IgG or IgM)

Multiplex RT-qPCR Bioneer AccuPower® ZIKV (DEN, CHIKV) Multiplex Real-time RT-PCR Kit

Luminex azMAP® MultiFLEXTM Zika RNA Assay

SolGent DiaPlexQTM ZCD Detection Kit

ThermoFisher Scientific TaqMan Arbovirus Triplex Assay (ZIKV/DENV/CHIKV)

RT-qPCR Altona Diagnostics aRealStar Zika Virus RT-PCR Kit 1.0

BioinGentech HumqPCR-realtimeTM Zika Detection

CDC Trioplex Real-time RT-PCR Assay

Coyote Bioscience One Step qPCR Detection kit for the Zika Virus

DaAn Gene Detection Kit for Zika Virus RNA

Focus Diagnostics aZika Virus Qualitative Real-Time RT-PCR

Liferiver Zika Virus Real Time RT-PCR

MyBioSource Zika, PCR Kit

Roche Molecular Systems aLightMix® Zika rRT-PCR Test

Siemens Healthcare Diagnostics aVERSANT® Zika RNA 1.0. Assay (kPCR)

ThermoFisher Scientific TaqMan Zika Virus Singleplex Assay

US Biological Life Sciences Genesig Teal-Time PCR Kit for Zika Virus, Easy

Viracor-IBT Laboratories aZika Virus Real-time RT-PCR Test

WELLS BIO careGENETM Zika Virus RT-PCR Kit

RT-PCR ARUP aZika Virus Detection by RT-PCR Test

Vela Diagnostics USA aSentosa® SA ZIKV RT-PCR Test

Transcription-mediated amplification Hologic aAptima® Zika Virus Assay
aIndicates assays approved under the FDA Emergency Use Authorization (as of October 21, 2016)
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Antibody-based assays
Despite advances in molecular diagnostics, the cost of
reagents and equipment and the likelihood of false-
negative results present inherent challenges. For these
reasons, serological assays remain important alterna-
tives or supplements for detection, particularly when

focusing on field-ready assays [18]. These techniques have
been most commonly used to detect a patient’s antibody
response within a diseased state, as previously described,
but can also be extended to direct assays for ZIKV antigens
in any sample matrix (i.e. immunoassay), including mos-
quito pool samples. Flavivirus immunoassays, including

Fig. 4 a Palm-sized device for point-of-care Ebola detection using RT-PCR and fluorescence detection (reproduced from ref. 33 with permission
from American Chemical Society). b Lab-on-a-CD integrated LAMP for foodborne pathogen detection (reproduced from ref. 45 with permission
from Elsevier). c Instrument-free RT-LAMP assay and self-contained cassette for point-of-care ZIKV assay (reproduced from ref. 40 with permission
from American Chemical Society)

Table 2 ZIKV biosensors developed in 2016

Assay
technique

Detection mode Target Sample
matrix

Range of detection Limit of
detection

Sample
volume

Assay
time

Cost per
assay

Ref.

Immunoassay Impedimetry NS1 (flaviviruses) PBS
Serum

10-2000 ng/mL
10-1000 ng/mL

3 ng/mL
30 ng/mL

40 μL 30 min unspecified [61]

Capacitance NS1 (flaviviruses) PBS
Serum

5-1000 ng/mL
5-1000 ng/mL

0.2 ng/mL
0.5 ng/mL

Immunoassay Chemiluminescence E protein (ZIKV) PBS
Urine,
plasma

10-105 PFU/mL
10-104 PFU/mL

10 PFU/mL
10 PFU/mL

100 μL ~2 h unspecified [68]

LAMP AC susceptometry NS5 oligonucleotide
(ZIKV)

Unspecified
Serum

1-103 aM
1-104 aM

1 aM
1 aM

40 μL <30 min unspecified [41]

NASBA-
CRISPR

Colorimetry RNA (ZIKV) Serum 3 fM - 30 pM 1 fM 300 μL ~3 h $0.10-$1 [39]

RT-LAMP Colorimetry E protein RNA (ZIKV) Saliva 50-5 × 104 PFU/mL 50-100 PFU/
mL

65 μL 40 min ~$2 [40]

RT-SIBA Fluorescence RNA (ZIKV) Lysis buffer 5 × 103-5 × 106

copies/mL
5000 copies/
mL

2 μL <30 min unspecified [42]
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ELISA and antibody-based lateral flow assays, have primar-
ily been developed through the antibodies to NS1, NS5, or
E proteins [59]. These are also the principal routes of de-
tection in commercial ZIKV MAC-ELISA kits authorized
by the FDA (Table 1) [60].
Depending on the extent of conservation for a tar-

geted epitope among all flaviviruses, some existing as-
says for DENV or YFV may be adapted directly to
ZIKV, but will only have the resolution to broadly iden-
tify ZIKV as a flavivirus. Recent immunosensors devel-
oped and tested by Cecchetto et al., for example, use
impedimetric and capacitive sensing of the NS1 protein
from DENV, and have the potential for near immediate
conversion to ZIKV detection due to potential cross-
reactivity of the anti-NS1 IgG1 antibodies employed
[61] (Table 2). Similarly, flavivirus biosensors have been
developed using lab-on-a-chip and lab-on-a-CD tech-
nology for label-free optical and electrochemical sens-
ing of DENV through serological IgM or NS1 protein
binding [62, 63].
Because ZIKV and other flaviviruses are similarly trans-

mitted to humans by mosquitoes of the Aedes genus,
though, the origin of a biomarker detected by a nonspe-
cific immunoassay may be unclear [64]. This potential for
cross-reactivity is a primary concern for ZIKV immuno-
sensing and begs further research into high-affinity anti-
bodies with greater species specificity.
In response to these concerns, new research by Dai et

al. has focused on discerning the operation of flavivirus
antibody recognition for ZIKV through improved
characterization of surface protein structures at the
angstrom level [65]. Their work has discerned one
mode of antibody binding specifically to the ZIKV E
protein along a conserved fusion loop, which may be a

focal point for future targeted sensors. An extensive
survey of E protein structures across 50 ZIKV strains
by Badawi et al. has also confirmed multiple conserved
epitopes between these, and work by Zhao et al. has re-
vealed several candidate mouse antibodies that demon-
strate favorable specificity for ZIKV detection through
binding localization at the DIII feature of the ZIKV E
protein [59, 66]. However, other proteins may also be
ideal candidates for sensing methods. For example,
Meltzer et al. have recently highlighted the merits of
developing IgM and IgG that are specific to the ZIKV
NS1 protein, through which detection may also be
more species-specific [67].
Following these efforts, early steps toward instrument-

free and point-of-care (i.e. field-ready) ZIKV-specific
immunosensors have been reported, although these have
been few in number. For example, Acharya et al. devel-
oped a chemiluminescent immunoassay that specifically
detects ZIKV by recognition of the E protein and quan-
tification following magnetic particle separation and
immunoblotting (Fig. 5) [68]. Exploration into immu-
nosensing methods adaptable to field-ready diagnostics
promises substantial improvements in future ZIKV de-
tection and treatment, especially if cross-reactivity can
be eliminated with new high-affinity, high-specificity
antibodies.

Conclusions
Considerable research is still required to reach our
goals of ZIKV sensing across an array of sample matri-
ces with field-ready assay platforms. Fortunately, much
has been learned over the past year about ZIKV on a
molecular level, and thus many new opportunities have
emerged for applying this knowledge toward treatment

Fig. 5 a Biocan diagnostic’s Tell Me Fast™ Zika/Dengue/Chikugunya virus IgG/IgM lateral flow assay (reproduced from www.zikatest.com with
permission from Biocan Diagnostics, Inc.). b Chemiluminescent particle immunoassay for ZIKV detection by magnetic separation and ultraviolet
fluorescence (reproduced from ref. 68 with permission from the authors)
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and diagnostics. Molecular identification of not only
ZIKV, but also of other flaviviruses, hinges on the im-
plementation of alternative techniques for amplicon
production and detection. Strides have been made in
the design of suitable primer sets specific to flaviviruses
and ZIKV in particular; however, more development is
needed for rapid, in-field detection. For antibody-based
assay development, researchers may build their methods
from existing cross-reactive assays, but adoption of forth-
coming ZIKV-specific antibodies will be necessary for
improved specificity. Above all, sensors that can be
quickly and inexpensively assembled, screened for quality,
and deployed will make the greatest impact in helping to
understand and prevent the spread of ZIKV.
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