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Abstract

Prototypical abnormalities of genome-wide DNA methylation constitute the most widely investigated epigenetic
mechanism in human cancers. Errors in the cellular machinery to faithfully replicate the global 5-methylcytosine
(5mC) patterns, commonly observed during tumorigenesis, give rise to misregulated biological pathways beneficial
to the rapidly propagating tumor mass but deleterious to the healthy tissues of the affected individual. A growing
body of evidence suggests that the global DNA methylation levels could serve as utilitarian biomarkers in certain
cancer types. Important breakthroughs in the recent years have uncovered further oxidized derivatives of 5mC -
5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), thereby expanding our
understanding of the DNA methylation dynamics. While the biological roles of these epigenetic derivatives are
being extensively characterized, this review presents a perspective on the opportunity of innovation in the global
methylation analysis platforms. While multiple methods for global analysis of 5mC in clinical samples exist and
have been reviewed elsewhere, two of the established methods - Liquid Chromatography coupled with mass
spectrometry (LC-MS/MS) and Immunoquantification have successfully evolved to include the quantitation of
5hmC, 5fC and 5caC. Although the analytical performance of LC-MS/MS is superior, the simplicity afforded by
the experimental procedure of immunoquantitation ensures it’s near ubiquity in clinical applications. Recent
developments in spectroscopy, nanotechnology and sequencing also provide immense promise for future
evaluations and are discussed briefly. Finally, we provide a perspective on the current scenario of global DNA
methylation analysis tools and present suggestions to develop the next generation toolset.
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Background: The trail of DNA methylation
derivatives
In 1866, Gregor Mendel published his seminal research
detailing the laws of inheritance [1] and shortly
afterwards in 1869 Friedrich Miescher discovered the
enigmatic compound “nuclein” or DNA as we know it
today [2]. In the first half of the 20th century, Conrad
Waddington designated the term “epigenetics” to de-
scribe “the branch of biology which studies the causal
interactions between genes and their products, which
bring the phenotype into being” [3] and used the
“epigenetic landscape” metaphor to describe events

contributing to embryonic development [4]. The “Se-
quence Hypothesis” proposed by Francis Crick in 1958
[5] was ultimately established as the “Genetic Code” by
research efforts of Marshall Nirenberg, Har Gobind
Khorana and Robert Holley [6]. While the genetic code
lays out the procedure for translating hereditary infor-
mation stored in DNA into functional attributes, the
natural laws pertaining to “regulation of gene expres-
sion” or commonly referred to as the “epigenetic code”
are still not understood. The explorative successes of
post-1960 research have no doubt enhanced the current
knowledge about the diversity of epigenetic mechanisms
and its relevance in cancers [for a comprehensive under-
standing of the history of epigenetics refer to [7]], but as
suggested by Bryan Turner much more needs to be done
in terms of characterization of epigenetic marks and
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delineating their biological functions, before the epigen-
etic code can be deciphered [8].
DNA methylation is the most widely characterized epi-

genetic mechanism involved in the regulation of gene
expression. Biochemically, DNA methylation refers to
the enzymatically (DNA methyltransferases; DNMT 1/
3A/3B/3 L) catalyzed addition of a methyl (−CH3) group
to the C5 position of the cytosine base in DNA resulting
in generation of 5-methylcytosine (5mC) (Fig. 1). Con-
served across the evolutionary hierarchy, 5mC regulates
gene activity in a heritable manner without altering the
primary DNA sequence and has been implicated in
numerous biological processes [for a comprehensive re-
view refer to [9]]. In healthy individuals, the traditional
epigenetics paradigm was based on the association of el-
evated methylation (hypermethylation) with transcrip-
tionally silent oncogenes and DNA repeat elements. In
2009, Tahiliani et al. discovered that 5mC can undergo
Ten-eleven Translocation (TET) enzyme mediated oxi-
dization to 5-hydroxymethylcytosine (5hmC) [10]. The
emergence of 5hmC as an epigenetic player disrupted

the simplicity of the traditional epigenetics paradigm
and called for re-evaluation of the methylation landscape
particularly because the tools hitherto used to assay
5mC were not specific and could not discriminate
between the effects conferred by 5mC and 5hmC [11].
In 2011 Ito et al. demonstrated that TET can catalyze
5hmC to further oxidized derivatives- 5-formylcytosine
(5fC) and subsequently 5-carboxylcytosine (5caC) [12]
While the biological significance of these oxidized de-
rivatives of 5mC is still in the process of being uncov-
ered, it is becoming increasingly evident that the
dynamic DNA methylation derivatives coordinate
among themselves and with other players to regulate
gene expression [9, 13–17].

Relevance of the expedition: Global
“hypomethylation” in cancers is almost universal
The global loss of DNA methylation content in human
tumors compared to normal tissues was reported in
1983 through independent research efforts of Feinberg
et al. and Gamasosa et al. [18, 19]. This novel discovery

Fig. 1 Summary of the status of global levels of the DNA methylation derivatives in normal and tumorous tissue. (Refer to Table 1 for details
and references)
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was initially disregarded as “an unwelcome complica-
tion” [20] but research spanning the last three decades
has confirmed that the trend of global hypomethylation
in human cancers is almost universal [20–24], although
each cancer type may have characteristic localized
regions associated with hypermethylation or hypomethy-
lation [25–27]. The association between global hypome-
thylation in cancers and the overarching loss of genomic
integrity suggested by chromosomal abnormalities asso-
ciated with mutations in DNMTs and misregulated
methylation patterns over DNA damage repair genes/
retroposon elements [9, 21, 28, 29] indicate that it is
likely that these events contribute to maintenance of a
catastrophic physiological state symptomatic of cancers.
Alterations to 5hmC have also relatively recently been

documented in hematological malignancies [30] and
other solid tumors. The reduction in the content of
5hmC in adult glioblastoma and astrocytomas has been
observed to correlate with poor prognosis [31, 32]. Car-
cinomas of the lung [33], prostate [34], breast [34, 35],
liver [33, 36], kidney [33], esophagus [37] and colon [34];
adenocarcinomas of the pancreas [33], prostate [33],
stomach [33], uterus [33], and ovary [33] showed a sig-
nificant reduction of 5hmC levels compared to corre-
sponding normal tissues [34]. In comparison to 5mC
and 5hmC, little is known to impute the trend of global
5fC and 5caC levels in tumors. While a recent study re-
ported elevation of 5caC levels in invasive ductal carcin-
oma and glioma [38], another study noted the depletion
of 5fC and 5caC in colorectal carcinoma [39]. Table 1
provides a summary of the recent clinical studies in glo-
bal analysis of DNA methylation derivatives and drives
home their relevance in the context of human cancers.

Undertaking the expedition: Tools for quantifying
DNA methylation derivatives
In 1948, Rollin Hotchkiss while attempting to quantita-
tively study the composition of the eukaryotic DNA
using paper chromatography, reported the incidence of a
minor constituent (designated as “epicytosine”) with a
migration rate slightly greater than that of cytosine and
suggested that the uncharacterized “epicytosine” might
be 5mC [40]. Ever since then, chromatographic tools
have dominated the field of DNA methylation analysis
and have subsequently evolved to include gas [41] and
liquid [42, 43] chromatography. Liquid chromatography
coupled with mass spectrometry (LC-MS/MS) is
regarded as “the gold standard” for quantitative analysis
of 5mC and currently this procedure has been adapted
to incorporate analysis of 5hmC, 5fC and 5caC. The
emergence of immunoquantification tools particularly in
clinical settings serves as an alternative strategy for ana-
lyzing the four DNA methylation derivatives known as
of today. Additionally two other methods based on

LINE-1 pyrosequencing [44] and methylation-sensitive
restriction digestion [45] are well established for the
quantifying of global 5mC in clinical samples but are
inapplicable to the analysis of the other DNA methyla-
tion derivatives and will not be elaborated in this review.
In the following sections we will provide our perspec-
tive of the two prominent DNA methylation analysis
toolsets based on LC-MS/MS and immunoquantifica-
tion followed by some strategies that singularly or in
combination show great promise of being developed
as the next-generation toolset (See Figs. 2 and 3)

LC-MS/MS tools
In 2005, Song et al. reported a liquid chromatography
electrospray ionization tandem mass spectrometry (LC-
ESI-MS/MS) [46] based method to quantitate 5mC and
prescribed its application to archived tumor specimen as
well as clinical samples derived from laser capture
micro-dissection owing to a sensitive limit of detection
(LOD) of 0.2 fmol and requirement of as little as 4 ng
input DNA (Fig. 2a). Kok et al. further developed this
method further and utilized the principle of LC-ESI-MS/
MS to quantitate 5mC [47] and reported a LOD of 2 pg
of cytosine and 5-methylcytosine. After the discovery of
5hmC in the human genome, it became imperative to
include its quantitation to evaluate the global methy-
lation landscape and Le et al. developed the liquid
chromatography electrospray ionization tandem mass
spectrometry with multiple reaction monitoring (LC–
ESI–MS/MS–MRM) to simultaneous quantitate the
global levels of 5mC and 5hmC [48] with a LOD of
0.5 fmol per nucleoside base.
Recently developed methods based on variations in li-

quid chromatographic techniques have pushed the limit
of epigenetic analysis and have subsequently been modi-
fied to include quantification of 5fC and 5caC in
addition to 5mC and 5hmC. The discoverers of 5fC and
5caC, Ito et al. adapted the mass spectrometric parame-
ters and reported the LOD to be 5 fmol and 10 fmol re-
spectively [12]. Thereafter to account for the low
abundance of 5fC and 5caC, several modifications have
been introduced to enhance the detection limits of these
derivatives by LC-ESI MS/MS. In 2015, Tang et al.
developed a labeling technique involving selective
derivatization of cytosine moieties using 2-bromo-1-(4-
dimethylamino-phenyl)-ethanone prior to LC-ESI-MS/
MS for quantifying all the four known DNA methylated
derivatives concurrently in archived Formalin-fixed
Paraffin-embedded (FFPE) tumor specimen [49]. The
LOD of 5mC, 5hmC, 5fC and 5caC were described as
0.10, 0.06, 0.11, and 0.23 fmol respectively, representing
a 35–123 fold enhancement in detection sensitivity com-
pared to LC-ESI-MS/MS without chemical derivatiza-
tion. In addition, Zhang et al. hydrolyzed genomic DNA
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by formic acid and analyzed 5caC by hydrophilic inter-
action liquid chromatography-tandem mass spectrom-
etry (HILIC-MS/MS) [50] yielding an LOD of 0.1 ng/mL
in the linear range of 40–4000 ng/ml. Yin et al. was able
to demonstrate a 1.8 − 14.3 fold enhancement of the LC-
ESI-MS/MS detection of 5fC along with 5mC and 5caC
by the use of ammonium bicarbonate (NH4HCO3) as an
additive to the mobile phase [51].
Despite the analytical superiority of LC-MS/MS, the key

hindrances to its widespread use in quantifying methylated
derivatives arise from the intricate procedures involved in
analyzing and maintaining the instrument. Smaller clinics
are particularly unwilling to adopt the LC-MS/MS technol-
ogy owing to the exorbitant prices of the initial installation

and the requirement of a highly skilled manpower to over-
see daily operations. Compared to immunoassay based
techniques which are commercially available in the form of
kits with detailed working protocols, LC-MS/MS requires
significant investment in terms of time and money in stand-
ardizing protocols. However, chromatography techniques
are still the standard for pharmacokinetics and pharmaco-
dynamics studies and will continue to dominate this field.
Given the surge in epigenetics research we expect a signifi-
cant effort in this field with emphasis on single cell analysis.
Improvements in developing an automated workflow with
technical support, will help lower service expenses, generate
higher sample throughput and can have a considerable con-
tribution in wider acceptance of LC-MS/MS.

Table 1 Summary of representative clinical studies performed during the period (2011–2016) to estimate global levels of DNA
methylation derivatives. Abbreviations: FFPE- Archived Formalin-fixed, Paraffin-embedded; IHC- Immunohistochemistry; Liquid
chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS)

Epigenetic
Mark

Method of Study Tumor type Observation Clinical relevance of observation

5mC IHC Colorectal cancer (n = 30) Vs
Control group (n = 30)

Loss of 5mC Associated with advanced colorectal
adenomatous polyps [88]

5hmC IHC Clear cell renal cell carcinoma
(n = 111) Vs matched adjacent tissue

Loss of 5hmC No correlation with grade/prognosis [89]

5hmC IHC Urothelial cell carcinoma (n = 55) Vs
matched adjacent tissue

Loss of 5hmC No correlation with grade/prognosis [89]

5mC &
5hmC

LC-ESI-MS Clear cell renal cell carcinoma
(n = 36) Vs paired normal

Loss of 5hmCNo
change in 5mC

No correlation with grade/prognosis [90]

5mC IHC Tongue squamous cell carcinoma
(TSCC) (n = 248) Vs Tumor adjacent
normal (TAN) (n = 235)

Loss of 5hmC Associated with the poor disease-specific
survival in TSCC patients [91]

5mC ELISA Renal Cell Carcinoma (n = 889) Vs age,
gender, ethnicity matched control
group (n = 889)

Loss of 5mC Associated with risk of developing
RCC [92]

5mC LINE1pyrosequencing Hepatocellular carcinoma (n = 208) Loss of 5mC Associated with poor disease free
survival [93]

5mC LINE1 LUMA Leukocytes of Breast cancer patients
(n = 384) Vs matched control (n = 384)

Loss of 5mC Associated with occurrence of
cancer regardless of hormone
receptor status [94]

5mC LINE-1
Pyrosequencing

Colorectal cancer with liver metastases
(n = 42) Vs matched primary (n = 24)

No change No correlation [95]

5mC LC-MS/MS Laryngeal cancer (n = 72) Vs adjacent
normal laryngeal tissue (n = 72)

Loss of 5mC in
both groups

No correlation [96]

5mC IHC Prostate Cancer (n = 48) Vs adjacent
benign (n = 48)

Loss of 5mC No correlation with prognostic /pathologic
grade [97]

5hmC IHC Parathyroid carcinoma (n = 17) Vs
Parathyroid adenoma (n = 43)

Loss of 5hmC Diagnostic criterion for rare disease [98]

5hmC LC-MS/MS Bone marrow & Blood from AML
(n = 206) Vs Healthy control

Wide range of 5hmC High 5hmC levels associated with
poor prognosis, low levels have no
correlation [99]

5hmC IHC Glioblastoma (n = 162) Vs healthy
control (n = 66)

Loss of 5hmC Marker for tumor infiltration zones [100]

5caC IHC Breast cancer (n = 59) Vs healthy
control (n = 28)

Gain of 5caC No correlation arrived at [38]

5mC, 5hmC,
5fC & 5caC

LC-ESI-MS Colorectal carcinoma (n = 24) Vs
matched tumor-adjacent normal

Loss of 5hmC, 5fC and
5caC. No change in 5mC

No correlation arrived at [39]
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Fig. 2 Schematic representation of methods for global analysis of DNA methylation derivatives based on (a) LC-MS/MS, (b) Immunoquantification,
(c) FRET, (d) SPR, (e) Electrochemistry, (f) Nanofluidics and (g) Nanopore Sequencing

Fig. 3 Nanoparticle-driven optical tools for the detection of DNA methylation derivatives (a) (i) Surface enhanced Raman scattering (SERS) and (ii)
Localized surface plasmon resonance (LSPR). SERS usually occurs on plasmonic nanostructures and dramatically enhances Raman scattering of
adsorbed molecules. SERS efficiency is directly related to not only proximal distance among the particles shown here but also size, shape etc.
LSPR that describes maximal optical absorption at the plasmon resonant frequency of nanoparticles can be distinguishably changed in the
form of cluster formation of nanoparticles. b An illustration of quantification of subcellular 5caC (in the context of intact nucleus and single
chromosome) with the help of local surface plasmon resonance (LSPR) properties of nanoprobes (nanoparticles conjugated antibody). The figs.
on the left represent Hyperspectral dark-field imaging (HSDFI) of 5caC distribution, while the corresponding figs. on the right demonstrate
reconstructed spectral maps of 5caC (scale bar = 5 μm) Reprinted with permission from [65] Copyright (2015) American Chemical Society
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Immunoquantification tools
Microtiter plate based immunoquantification known as
enzyme-linked immunosorbent assay (ELISA) is a well-
established method and can be effectively applied for the de-
tection of epigenetic modifications of DNA immobilized on
plastic, using an antibody highly specific to the target epi-
genetic marks (Fig. 2b). As early as 2000, Piyathilake et al.
reported suitability of immunoquantification of 5mC over
other first generation methylation quantification assays in
rare clinical specimen [52]. For 5mC, quantitative analysis
by ELISA as well as the semi-quantitative immunohisto-
chemical evaluation in clinical biopsies or cells collected by
laser capture microdissection (LCM) offers the advantage of
cost and speed. In 2012, Kremer et al. generated a rapid and
sensitive ELISA based assay to quantitate 5mC (methDNA-
ELISA) [53]. This method requires as little as 10 ng of input
genomic DNA, demonstrates linearity in the 1–10% gen-
omic range and correlates well with MS approaches of 5mC
quantification. Commercially available antibodies targeting
5hmC, 5fC and 5caC were practically nonexistent in the
early years following their discovery, however post 2011
with the generation of highly specific antibodies, immunoas-
says were gradually adapted to include quantification of
these novel epigenetic derivatives as well. Li et al. investi-
gated for the first time the abundance of 5hmC in human
tissues by ELISA [54]. This method yields an LOD of 0.1 ng
with a dynamic range 0.2–10 ng of 5hmC.
For simultaneous analysis of the four epigenetic marks,

Chowdhury et al. designed a biotin–avidin mediated en-
hanced enzyme-based immunoassay (EEIA) and evalu-
ated its performance in genomic DNA isolated from
peripheral blood of patients diagnosed with metastatic
forms of lung, pancreatic and bladder cancers [55]. Ana-
lytical sensitivity was significantly improved by increas-
ing the number of labeling enzymes facilitating color
detection on the antibodies, achieving a LOD of 1–2 pg
and enabling the detection of the rare epigenetic marks.
EEIA was subsequently utilized to evaluate the extent of
alteration of the methylated DNA derivatives upon treat-
ment by Decitabine- an FDA approved DNA demethy-
lating drug in myeloid malignancies [13] as well as by
the chemically induced hypoxia agent sodium dithionite
[56], indicating the versatility of the assay in multiple
contexts. Recently by utilizing the potential of locus spe-
cific methylation status to confer conformational differ-
ences, Kurita et al. introduced a novel immunochemical
approach of performing methylation analysis at single
CpG loci on a conventional microtiter plate format [57].
Microtiter plate assay is universal and commercialized
by biotech companies such as Epigentek Group, Sigma-
Aldrich and Zymo Research. However, the analytical
sensitivity of the rarer epigenetic derivatives particularly
5fC and 5caC is variable and often these derivatives re-
main undetectable. Sample processing and the unknown

biological context of these derivatives may in some ways
contribute to the unpredictability in detection of these
rare marks. Key opportunities to advance this technology
is in requiring less input DNA to perform the analysis as
well as incorporation of a suitable signal enhancement
strategy using well-defined conjugates including nanopar-
ticles, enzymes and fluorophores. Given the familiarity of
immunoquantification tools, this approach will continue
to be extensively used in methylation analysis primarily
due to the relative ease of adaptability in a clinical setting.

Spectroscopic strategies
There have been many interesting reports on fluorescence-
based epigenetic analysis owing to its simplicity for signal
generation and detection. Wang et al. demonstrated a par-
ticle counting assay for rapid and sensitive detection of
DNA modifications using benzo[a]pyrenediol epoxide
(BPDE)-DNA adducts that were captured by immuno-
magnetic particles [58]. By amplifying fluorescence signal
with OliGreen™ dyes, the captured BPDE-DNA adducts
could be quantified by particle counting, which was propor-
tional to the modification level in genomic DNA. The de-
tection of limit was about 180 fM. In addition, Feng et al.
developed a fluorescence resonance energy transfer (FRET)
assay using an optically amplifying cationic conjugated
polymer (CCP, poly((1,4-phenylene)-2,7-[9,9-bis(6′-N,N,N-
trimethyl ammonium)-hexyl fluorene] dibromide)) [59].
The occurrence of FRET between CCP and fluorescein
(Fig. 2c) incorporated into DNA was used for read out,
however this assay took about 20 h to attain the methylated
level of cancer cells. Zhang et al. utilized an identical
method for diagnostic and screening of cancer [60]. Single
molecule techniques to monitor the dynamics of epigenetic
proteins exist [57, 61] but these are not applicable for rou-
tine analysis. Precedence for quantification of epigenetic
marks in nucleosomes including resolving the stoichiom-
etry of the epimarks using single cell-based FRET ap-
proaches also exist [62] and these tools remain to be
optimized for DNA methylation analysis. With advances in
microscopy, especially in sensitivity (single molecule tech-
niques) and resolution (super-resolution techniques), basic
research will continue to enhance our understanding of the
dynamics of epigenetic programming.
As one of the highly sensitive spectroscopic tech-

niques, Surface plasmon resonance (SPR) known for its
appeal in monitoring biomolecular interactions have also
been applied in epigenetics evaluation (Fig. 2d). Nguyen
et al. introduced a strategy for ultrasensitive detection of
methylation of ctDNA of PIK3CA gene based on
localized SPR (LSPR) associated with plasmon coupling
mode of gold nanoparticles[63] to observe a shift in the
LSPR peak upon the immunogold colloids binding to
two methylcytosines, to yield an extremely low LOD of
~50 fM. Kurita et al. reported a sequence-specific
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immunoassay chip for DNA methylation by microfluidic
surface plasmon resonance (SPR) detection [64]. By utiliz-
ing an affinity measurement involving the target, (methyl-)
cytosine, in a single-base bulge region and an anti-
methylcytosine antibody in combination with a biotinyl-
ated bulge-inducing DNA probe, this system could obtain
the methylation status in 6 attomoles (48 femtograms) of
synthesized oligo DNA in 45 mins, which is the fastest
DNA methylation assessment hitherto reported. Darkfield
microscopy based on SPR have been implemented by
Wang et al. to quantify global methylation levels at the sin-
gle cell level [65], showing promise as a routine screening
tool for in situ analysis in the context of tissues.

Electrochemical tools
Variations of electrochemical tools based on redox reac-
tions have been introduced for detection of DNA methy-
lation. Kurita et al. introduced methylated cytosine in
DNA via ELISA with ECL detection in real genomic
sample [66] (Fig. 2e). Here, an acetylcholinesterase was
employed as enzyme tracer labeled with anti-methyl
cytosine, which converted acetylthiocholine to thiocho-
line, enabling accumulation on gold electrode surface
and quantitatively measurement of 5mC in the range
from 1 to 100 pmol. By glycosylation modification of
5hmC with glucosyltransferase and sodium periodate,
Chen et al. detected 5hmC at sub-nanogram level, which
was 20 times more sensitive than the commercial kit
based on optical measurement [67]. Carbon-based nano-
materials such as carbon nanotube and graphene were
recently employed as alternative electrodes to the con-
ventional metal electrode due to its high electrical con-
ductivity. Wang et al. reported a polypyrrole (PPyox)-
directed multiwall carbon nanotubes (MWNTs) film
modified glassy carbon electrode (GCE) which was used
to electrically oxidize DNA bases for evaluation of DNA
methylation level [68]. Due to extraordinary catalytic
property of PPyox/MWNTs/GCE, the peak potential of
5mC was distinctive compared with other bases, espe-
cially the unmethylated cytosine, upon applying 180 mV,
enabling rapid detection of the methylation status in real
samples within 45 min. The major advantage of electro-
chemical method is limit of detection and miniaturization.
Additionally, it can be anticipated that micro-electro-
mechanical system (MEMS) and nanotechnology will be
combined for miniaturization in the future. However, the
lower sample volume may cause low signal-to-noise ratio,
thus more elaborate manufacturing process is required.

Microfluidic tools
Microfluidic platform technology has several advantages
over conventional analytical methodologies, enabling fast
response, cost effectiveness and low consumption of re-
agents. Recently this method has been applied in the

field of epigenetics to efficiently enhance performance of
DNA methylation analysis. Cipriany et al. used fluores-
cently labeled Methylated DNA Binding Domain (MBD)
proteins as probes to perform Single-Chromatin analysis
at the nanosacle (SCAN) in DNA restricted to microfab-
ricated nanofluidic channels (Fig. 2f ) enabling rapid and
real-time interrogation of individual molecules of meth-
ylated DNA based on their fluorescent signatures [69].
Ronen et al. presented a universal, high-throughput,
microfluidic-based fluorometric method for studying
DNA methylation [70], employing bacterial HPAII DNA
methyltransferase of which enzymatic activity was ana-
lyzed by measuring Michaelis-Menten constant. The
values were determined to be 5.8 nM and 9.8 nM
respectively. These pioneering efforts paved the road to
the realization of epigenetic analysis in microfluidic
devices, with a possibility of ultimately utilizing these
devices in point-of-care testing. However, despite its ad-
vantages over conventional methods, limited work exists
in microfluidic-based epigenetic analysis. A possible rea-
son could be the complexity of sample preparation, reli-
ability and robustness of the approach.

Nanopore Sequencing
Nanopore technology offers a promising alternative to
conventional DNA sequencing by measuring distinctive
electric currents obtained from different bases and has
been recently applied for epigenetic studies. Zeng et al.
reported a α-hemolysin-based nanopore sensing method
(Fig. 2g) for 5mC and 5hmC detection in DNA at the
single-molecule level [71]. Here, 5hmC is first selectively
modified with iron-linked crosslinker via Click chemis-
try. Subsequently the passage of the modified bases
through nanopores causes unbinding of the host-guest
complex generating characteristic current signatures and
enables obtaining quantitative information on the 5mC
and 5hmC. Recent studies have focused on evolving an
electronic signature of methylated DNA bases [72] as
well as development of novel nanaomaterials for fabri-
cating nanopores. The electronic signature based moni-
toring of modified DNA bases through nanopore has
excellent appeal in high throughput, especially consider-
ing the state-of-art standardization of manufacturing
process in materials research.

Nanoparticle based tools
Nanoparticles that have been employed as tracers in
many biosensor applications have also been employed in
exploratory epigenetic research owing to its extraordin-
ary physical properties such as photothermal effect, lo-
calized surface plasmon resonance which are based on
electromagnetic field passing around the nanoparticle
surface. The essence of this approach is the induction of
particle aggregation to observe a shift in peak for
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detection by fluorescence or colorimetry. Ge et al. dem-
onstrated a simple colorimetric method to detect DNA
methylation [73]. Here, methylated CpG region was
captured and enriched by immunomagnetic separation
followed by release via heat denaturation. By control-
ling salt-induced aggregation process associated with
unmodified gold nanoparticle, a LOD of 80 fmol was
achieved. This method is semi-quantitative by com-
mon UV/Vis spectrophotometer, enabling simple and
rapid detection of DNA methylation. Interestingly,
nanoparticles can be utilized for enhancing efficiency
of isolation of genomic DNA and can be subsequently
utilized for methylation analysis. Zhou et al. developed
a novel one-point extraction technique from whole blood
employing bi-functional carboxyl-functionalized magnetic
nanoparticle used as solid-phase adsorbent [74]. Here, the
extracted chromatin from leukocytes via magnetic separ-
ation was concentrated and coated on a microtiter well
and analyzed [75] for the detection of the four different
cytosine derivatives. Nanoparticles depending upon the
material can be used as reporters in a sensor device. Since
the size can be tuned in the range from 10 to 200 nm with
slight modification of existing protocols, there are many
ways to optimize analytical conditions for epigenetic
analysis and utilization of nanoparticles in other detection
modalities, such as microfluidics, plasmonics and
electrochemical sensing, and in spectroscopy. Fig. 3a dem-
onstrates the basic concept of nanoparticle-based aggrega-
tion as a signal for SERS and LSPR sensing.

Surface enhanced Raman scattering (SERS) based tools
Wang et al. developed a novel concept for enzymatic
control of plasmonic coupling for DNA demethylation
[76]. Here, gold nanoparticle with a Raman reporter and
hemimethylated DNA were used as probes. Destabilized
nanoparticles were aggregated among others, which gen-
erated strongly distinctive SERS signals in response to
DNA methylation. Since this method was performed by
a homogenous single step analysis, rapid, convenient
and a miniaturized analytical method for epigenetic ana-
lysis could be developed. (Fig. 3b) Furthermore silver
nanoparticles were also used as SERS-based enhance-
ment substrate combined with hybridization chain reac-
tion for the determination of DNA methyltransferase
[77]. Morla-Folch et al. demonstrated the feasibility of
direct SERS in combination with chemometrics and
microfluidics for the relative quantification of the four
DNA methylation derivatives in single- and double-
stranded DNA [78]. More recently, Ouyang et al. have
shown that detection of 5caC and 5hmC along with
5mC is possible with SERS using a novel graphene
wrapped plasmonic material [79]. In the future, en-
hanced approaches based on nanoparticles or enzymes
or development of hand-held units will be more

common place. Given the recent work and the advent of
new materials and standardization of manufacturing
processes, one can expect SERS to become a viable op-
tion for routine monitoring of epigenetic events.

Conclusion and the future roadmap
The challenge of quantifying global levels of DNA
methylation derivatives can be gaged from the relative
abundance of these epigenetic marks. In humans, 5mC
makes up about 1% of the total DNA bases [80] and
5hmC abundance is ∼ 10 to 100-fold lower than that of
5mC [10, 32, 81]. On the other hand, 5fC and 5caC
occur ∼ 40 to 1000 times less frequently than 5hmC [12].
For over three decades, chromatography based methods
have continued to dominate bioanalytics and it is rea-
sonable to expect that LC-MS/MS will continue to play
a critical role in the evaluation of epigenetic modifica-
tions. It is worth mentioning that 5hmC, 5fC and 5caC
were first discovered in human tissues by thin-layer
chromatography and finally confirmed by LC-MS [12,
82]. Immunoquantification tools serve as a simple strat-
egy and remain extensively used for the analysis of glo-
bal content of methylated DNA derivatives especially in
the post-2011 era and serves as an invaluable tool for
clinicians. Additionally, tools analyzing the 5mC levels of
DNA repetitive elements such as LINE-1, Alu and Sat-α
can serve as acceptable surrogate indexes to estimate
global DNA methylation level [83, 84] but cannot be ap-
plied to the analysis of the other derivatives. Thus, LC-
MS/MS and immunoquantification constitute the two
most widely exploited methodologies for global analysis
of DNA methylation derivatives in human cancers.
While, LC-MS/MS is considered as the gold standard
method for quantitative analysis of DNA methylation
derivatives, the logistical and technological complexities
involved in processing and analyzing data, limits its
applicability in a clinical setting. On the other hand,
immunoquantification is simple and can be successfully
integrated with emerging optical, electrochemical and
microfluidics technologies, but fares only second to LC-
MS/MS in terms of analytical metrics (details of the
comparison depicted in Fig. 4a). The sophistication in
optics, antibody development methods, advances in ma-
terials research, standardization of materials processing
methods, scaleup of nanoparticle fabrication processes
presents enormous opportunities for further refinement
of 5mC analysis. It is conceivable that rapid point of care
(POC) epigenetic screening methodologies based on the
emerging technologies will be developed in the near
future (please refer to Fig. 4b to understand the authors’
illustrative summary of the current state of global DNA
methylation analysis tools and the opportunities for de-
velopment of state-of-art analysis tools).
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It is also conceivable that with the emergence of
Next Generation Sequencing (NGS) technologies,
quantification of global methylation derivatives along
with the precise identification of localized sites under-
going these alterations will become prevalent. While
this may in the foreseeable future help clinicians
make informed choices pertaining to patient profiling
and therapeutic management, standards will have to
be developed to decorously interpret the disease risk
imparted by global changes of the methylome. We
realize that the infrastructural wealth available to sci-
entists in biomedical settings may not be practical in
a clinic and in this regards, and to address this chal-
lenge our lab and others have used lateral flow tech-
niques that can potentially be used for onsite sensing
[85, 86] in conjunction with chromatin extraction
methods [87] to addressing this lacunae. Sample prep-
aration will continue to challenge the point of care
sensors development. However, we are optimistic that
advances in miniaturization, development of novel
materials, production of capture biomolecules (anti-
bodies, aptamers etc.) will infuse sufficient enthusiasm
to further the field of developing analytics for epigen-
etics. Finally, further explorations of the molecular
dynamism of 5hmC, 5fC and 5caC will bring clarity
to their biological significance in cancers and identify
other areas for the development of tools for diagnos-
tic determination of the methylated DNA derivatives.
We expect loci-specific evaluation and quantification

of epigenetic targets utilizing modern technologies to
become important metrics with more mechanistic
studies. In this regard, development of algorithms
with heuristics to expound on the profiles of methy-
lome for prognostic determination could become
prominent. In summary, it is exciting to note the
milestones covered in this trail of DNA methylated
derivatives and assess from these studies the impend-
ing way ahead for developing tools that hold the key
to understanding the “epigenetic code” and its de-
regulation in diseases such as cancer.
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