
REVIEW Open Access

Facing the challenge of sustainable
bioenergy production: Could halophytes be
part of the solution?
Ahmed Debez1,2* , Ikram Belghith1, Jan Friesen2,3, Carsten Montzka2,4 and Skander Elleuche2,5,6

Abstract

Due to steadily growing population and economic transitions in the more populous countries, renewable sources
of energy are needed more than ever. Plant biomass as a raw source of bioenergy and biofuel products may meet the
demand for sustainable energy; however, such plants typically compete with food crops, which should not be wasted
for producing energy and chemicals. Second-generation or advanced biofuels that are based on renewable and non-
edible biomass resources are processed to produce cellulosic ethanol, which could be further used for producing energy,
but also bio-based chemicals including higher alcohols, organic acids, and bulk chemicals. Halophytes do not compete
with conventional crops for arable areas and freshwater resources, since they grow naturally in saline ecosystems, mostly
in semi-arid and arid areas. Using halophytes for biofuel production may provide a mid-term economically feasible and
environmentally sustainable solution to producing bioenergy, contributing, at the same time, to making saline areas –
which have been considered unproductive for a long time – more valuable. This review emphasises on halophyte
definition, global distribution, and environmental requirements. It also examines their enzymatic valorization, focusing
on salt-tolerant enzymes from halophilic microbial species that may be deployed with greater advantage compared to
their conventional mesophilic counterparts for faster degradation of halophyte biomass.
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Background
Meeting the significant increase in global demand for
energy commensurate with the rising population and
economic activity represents a major challenge. At
current levels of consumption, the world’s energy de-
mand will range between 15 and 18 billion tonnes of oil
equivalent (TOE) in 2035, representing a 50% increase
as compared to 2009 [1]. These estimations of the Inter-
national Energy Agency (IEA) imply a marked imbalance
between the rate of population increase (1.3-fold) and
that of energy consumption (2-fold) between 2009 and
2050 [2].
The limited availability of fossil fuels for producing

energy, chemicals, and other materials demands

technological development to exploit alternative and re-
newable sources of energy. As alternative and green
sources, wind, solar, and geothermal energy have been
commanding increasing attention but these resources
cannot meet the demand for bulk chemicals and mater-
ial resources. An additional source of renewable energy
is plant biomass [3]. The carbohydrates in plant biomass
are versatile, being important not only for the produc-
tion of bioethanol but, as oligosaccharides, also as thera-
peutic agents, e.g. cyclodextrins in the pharmaceutical
industry and biomedicine [4]. Agricultural residues and
plant waste streams that do not serve as feed or food are
of commercial and scientific interest as a source of cellu-
losic ethanol [5]. Conventional crops, besides being part
of the above-mentioned competition for land between
food and fuel, always use fresh water, which enlarges
substantially the water footprint of bioenergy products
from plants [6].
The production of biofuels is mainly based on conven-

tional crops such as sugar cane and maize (Zea mays) or
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on straw. However, sustainable production of bioethanol
and biogas from renewable plant resources would glo-
bally reduce the dependence of some countries on
imported fossil fuels and would have a positive impact
on climate change [7]. Starchy biomass (sugar beet and
maize, for example) were the first-generation sources of
biofuels whereas non-edible lignocellulosic plant mater-
ial (straw and wood chips, for example) are the predom-
inantly used second-generation sources of biofuels.
Saline areas, generally considered as marginal zones

with extremely low productivity, are rich in halophytic
vegetation (plants that prefer salt-rich environments),
which is able to sustain itself despite high salinity levels.
Unlike glycophytes (plants that are affected even by low
levels of salinity), halophytes can withstand and even re-
quire salinity for optimal growth: this ability or require-
ment is the result of a complex strategy that integrates
different mechanisms at cellular, tissue, and whole-plant
levels. Halophytes are useful in many ways: as sources of
fibre, oil, and medicines, for landscaping (as ornamental
plants), in phytoremediation and medicinal applications,
and as oilseed species [8–12]. Although currently halo-
phytes are exploited only on a small scale, their natural
habitats occupy relatively large areas throughout the
world. Halophytes are becoming increasingly important
not only because of the need to avoid the competition
for land between food and other uses –– given that fresh
water and arable land are in limited supply –– but also
because agriculture is being threatened by the steady in-
crease in the extent of saline soils [13]: saline soils cover
about 8% of the global land surface, including deserts
and salt lakes that are unsuitable for large-scale biomass
production.
Areas most suitable for the cultivation of halophytes

are semi-arid coastal regions as well as regions where sa-
line water is plentiful either naturally (because of high
groundwater levels when the groundwater is saline or
brackish) or as a by-product. Introducing halophyte spe-
cies as new crops that are irrigated with saline water is
becoming an increasingly attractive, feasible, and sus-
tainable option for ensuring food security in several salt-
affected regions [14, 15]. Consequently, economic
utilization of halophytes is receiving increasing attention,
especially in arid regions where intensive irrigation or
shortage of fresh water forces people to use marginal re-
sources such as brackish underground water [16]. Intro-
ducing halophytic plants could be advantageous because
they are cheaper to grow and naturally abundant on sa-
line soils and thus do not have any adverse impacts on
the human food chain [17]. High-yielding non-food bio-
mass crops are being currently promoted worldwide to
meet the increasing demand for energy and to contrib-
ute to reducing the emissions of greenhouse gases.
Another major advantage of halophytes is their ability to

produce satisfactory yields even under adverse condi-
tions as well as to serve as a sustainable and direct
source of income for farmers [18]. Most salt-tolerant
halophytes accumulate high levels of salt in their shoots.
Although such high levels of salt do not impair biomass
production [5], they have other undesirable conse-
quences such as slowing down the degradation of bio-
mass feedstock for bioenergy production by inhibiting
the enzymatic decomposition of lignocellulose and accel-
erating the corrosion of reactor components. Measures
to overcome these effects include adjusting the organic
loading rate in the reactor or co-digestion with conven-
tional plant materials that serve as energy sources [19].
Another option to increase bioethanol yield is to apply
salt-tolerant enzymes from halophilic microorganisms to
degrade lignocellulose under saline conditions.
This interdisciplinary review provides an overview of

halophytes as potential sources of energy, their availabil-
ity on the scales necessary for producing bioenergy, and
the technical challenges related to processing the ligno-
cellulose from salt-containing biomass (Fig. 1). To dee-
per address these topics, Section 1 provides a general
classification of halophytes and a description of their
natural habitats. Section 2 describes halophyte habitats
starting with the types of habitats, assessment and moni-
toring methods for saline soils, and the global distribu-
tion of saline environments and also emphasizes the
processes of soil salinization and soil chemistry of saline
environments. Section 3 identifies halophytes species
that are exclusively suitable for biofuels production,
whereas Section 4 summarizes the process of enzyme-
mediated degradation of cell walls in plants, focusing on
salt-tolerant enzymes to improve the efficiency of

Fig. 1 Structure of the review. Chapters deal with the classification
and distribution of halophytes including data on soil chemistry.
Examples of halophytes with a potential for bioenergy production are
given and the process of biomass degradation is described in detail
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converting biomass into bioenergy. Section 5 concludes
the review and provides perspectives for future research
on treated and produced water for halophyte irrigation,
on side effects of cultivating halophytes, and on improv-
ing bioenergy production from halophytes.

Classification of halophytes
Halophytes represent a phylogenetically heterogeneous
group of extremophilic plants native to saline habitats,
which can cope with or even require high levels of salt
for optimal growth [20]. Halophytes are present in
nearly half of the plant families. Currently, more than
2600 halophyte species, distributed worldwide, have
been identified, which reflects their potential as cash
crops under saline conditions [21, 22].
Halophytes were defined as salt-tolerant plants that

can thrive and complete their life cycle in habitats
with soil salinities up to 200 mM NaCl [23]. More re-
cently, halophytes were described as plants that can
tolerate salt concentrations ranging from 500 mM
NaCl to 1000 mM NaCl [21]. Halophytes are gener-
ally classified into two categories: euhalophytes, con-
sidered the most tolerant species, which require salt
for optimal growth and have the ability to grow at
concentrations up to 500 mM NaCl, and miohalo-
phytes, considered less tolerant, that do not show salt-
induced growth stimulation [24, 25] (Fig. 2). The ability of
halophytes to survive under such challenging conditions is
complex and multifaceted, but it closely depends on the
plant ability to control salt uptake through the
compartmentalization of Na+ (‘includer’ species) and/or to
salt extrusion (‘excluder’ species).

Habitats of halophytes
The description of different halophyte habitats, and of
their distribution and functioning, is essential for asses-
sing the potential of halophytes as sources of bioenergy.
This section, therefore, focuses on the soil–plant

relationship in salty environments. The physical chemis-
try of soils and sediments needs to be discussed and the
soil salinization process is described to more accurately
assess the untapped potential of this ecological niche for
producing biomass using halophytes.

Types of saline environments
Typical halophyte habitats are tidal flats in coastal re-
gions, as they are prone to saltwater intrusion, and saline
and sodic soils. Besides these ecosystems or habitats,
sources of saline water, such as treated effluent from
wastewater treatment plants and water from oilfields,
also provide habitats for halophytes.
Tidal flats are regions that are flooded during the high

tide and exposed during the low tide [26]. Although glo-
bal data on tidal range as well as on elevation are avail-
able, the mapping of coastal regions is somewhat limited
because it requires highly accurate data. Regions prone
to saltwater intrusion are coastal regions that exhibit a
high groundwater abstraction as well as estuaries or re-
gions with irrigation or drainage channels that act as
conduits for saltwater. Saltwater intrusion is defined as
the mixing of saline water with freshwater aquifers. Glo-
bal mapping of saltwater intrusion continues to be a
challenge because the intrusion depends on the rates of
groundwater abstraction and natural groundwater
recharge as well as on the geology and hydrochemistry
of coastal groundwater. To show the extent of coastal
regions prone to saltwater intrusion, Fig. 3 includes re-
gions 20 m above the mean sea level. Although not
linked to saltwater intrusion, the limit was set at 20 m
because it matches the approximate maximum depth of
hand-dug wells (www.sswm.info/content/dug-wells), which
enables such wells to be used as sources of irrigation water
that can be pumped at relatively low costs in most regions
of the world, thereby enhancing saltwater intrusion. Coastal
regions are being increasingly salinized because of
anthropogenic activity (increased demand for water) and
because of sea level rise due to climate change, reduction of
river flows, and greater frequency of extreme events (e.g.
storm surges) [27, 28].
Salt-affected soils are those with high contents of sol-

uble salts, which restrict normal plant growth. Besides
typically saline or sodic soils, such as Solonchakz or
Solonetz, soils are considered saline or sodic if their
electrical conductivity is higher than 4 dS/m or 6% sat-
uration with exchangeable sodium [29]. The distribution
of salt-affected soils can be determined using global soil
maps, such as the Harmonized World Soil Database
[15, 30].
In water-scarce regions, re-use of water resources is em-

phasized; as a result, urban wastewater is often used for ir-
rigation. The so-called ‘treated effluents’ (TE) are available
from the household level to village level and city level and
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Fig. 2 Preferred salt level of different plant types. Euhalophytes prefer
higher salt concentrations than miohalophytes, whereas non-halophytes
can tolerate only low levels of salts. Details are given in the text
and in Fig. 4
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are often highly saline [31]. Generally, TE are mixed with
fresh water to achieve usable salinity levels, but such mix-
ing would not be required for halophytes. The overall
quality of TE depends to a great extent on the quality of
municipal water supply, the nature of wastes added during
use, and the extent to which the wastewater is treated
[32]. However, salt concentration in TE is often higher
than in the original source, posing a greater risk of aggra-
vating soil salinization. Assouline and Narkis [33], for ex-
ample, showed that long-term effects of irrigation with TE
were a significant degradation of soil structure and hy-
draulic properties due to the increased percentage of ex-
changeable sodium.
As with TE, water from oilfields is not linked to spe-

cific regions or ecosystems. Both are mentioned because
they are sources of highly saline water (Fig. 4) available
in abundance. Water thus produced is pumped out dur-
ing oil production and can be as much as ten times the
volume of oil produced. Although up to 60% of such
water is re-injected into the wells to maintain aquifer
pressure, huge amounts remain on the surface and have
to be suitably disposed of, which is where halophytes are
proving useful [34, 35].

Monitoring and assessment of salt-affected soils
Soil salinity is typically defined as the concentration of dis-
solved mineral salts in soil or, more specifically, in soil

solution [36]. The major cations are Na+, Ca2+, Mg2+, and
K+, and the major anions are Cl−, SO4

2−, HCO3
−, CO3

2−, and
NO3

−. Further contributions to soil salinity come from B,
Sr2+, SiO2, Mo, Ba2+, and Al3+. Soil salinity is expressed in
millimoles per litre or in micromoles per litre, but more
often as a combined measurement using electrical con-
ductivity (EC) of the solution reported in millisiemens or
decisiemens per metre. To measure salt content in a la-
boratory in addition to EC, total dissolved salts (TDS) are
measured by evaporating a known volume of water and
weighing the remaining solid residue. Electrical conductiv-
ity can be measured far more quickly because it is based
on the difference in EC between saline and non-saline
water: a current is applied to two electrodes immersed in
the water sample; the current flow between the two
electrodes changes depending on the salt content.
Typical units (including conversions) are 1 dS/
m = 0.064% = 0.64 g/L = 640 ppm = 11 mM NaCl.
However, soil salinity is dynamic and varies with soil

water content. Therefore, EC measurements are typically
performed in soil samples saturated to reference water
content (ECe). Soils with ECe higher than 4 dS/m are clas-
sified as saline, and those with ECe less than 4 dS/m are
classified as non-saline. Soils with ECe less than 4 dS/m
could also be sodic, when the content of exchangeable Na
+ is 15% more than the cation exchange capacity (CEC).
Soil maps are usually based on soil profiles. Samples from
such soil profiles are analysed in the laboratory and a

Fig. 3 Distribution of saline environments. Coastal regions 20 m below the mean sea level were mapped using Shuttle Radar Topography
Mission (SRTM) and Moderate-Resolution Imaging Spectroradiometer (MODIS) land/sea mask data using Google Earth and ArcGIS [129, 130]. The
distribution of saline or sodic soils was taken from the Harmonized World Global Soil Database [30]. The Koeppen and Geiger (classes Am, Aw, B,
Csa, Csb, Cwa, and Cfa) data show tropical to (semi-)arid regions with dry climate or high seasonality [131]
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number of physico-chemical properties are determined,
including the content of solutes such as salt [37]. Next to
laboratory analyses, in situ observations, such as EC, are
usually taken. These measurements are classically done on
a point scale (soil) or from water samples (such as well
observations). Salinity can also be measured remotely,
using geophysical techniques such as electromagnetic in-
duction (EMI) or electrical resistivity tomography (ERT),
either on the ground or from the air, using a helicopter or
fixed-wing aircraft [37–40]. Moving to larger scales, satel-
lite data are used as well through relationships between
hyperspectral or radar wavebands and salinity or dielectric
properties [39, 41, 42].

Mapping of saline environments
The global extent and distribution of saline environ-
ments can be assessed using global soil data sets such as
the Harmonized World Global Soil Database [30]. The
global distribution shows that many regions are at con-
tinental locations and often in very hot and arid regions,
unsuitable for agriculture (Fig. 3). In addition, many of
the continental saline environments are very sparsely
populated (Fig. 3). With respect to coastal regions, salt-
water intrusion continues to affect increasingly larger
areas, especially regions with high population densities;
44% of the global population lives within 150 km from a
coast (United Nations Atlas of the Oceans, www.ocean-
satlas.org) [43]. In addition to the densely populated
areas that are affected because of anthropogenic salt-
water intrusion following overexploitation of ground-
water aquifers, sea level rise also makes low-lying coastal
regions more prone to salinization [27, 28]. Areas prone
to saltwater intrusion (Fig. 3.) account to about 240

Mha, which corresponds to 1.8% of the global land sur-
face area. Mapping saline environments on a large scale
is usually done through soil maps, e.g. national or global
soil maps. On regional and smaller scales, remote sens-
ing has been used for mapping salinity [44]. However,
global mapping approaches are limited because of differ-
ent types of halophyte habitats and inadequate data
quality on a global scale [15, 45]. Global studies estimate
the extent of salt-affected land at 1128 Mha; in other
words, about 8.5% of the global land surface area is sa-
line or sodic [15, 46].
With regard to halophytes for bioenergy, many studies

estimate the extent of halophyte habitats in combination
with plant growth models and economic analyses [14,
15, 19, 47]. In China, for instance, bioenergy crops are
cultivated extensively mainly on coastal saline lands so
that arable farmland can be used for grain crops [47]. In
addition, on a 2.0 million ha large tidal flat, the area
under halophytes is increasing at rates ranging from as
low as 1.3–2.0 ha per year to as much as 10,000 ha per
year to meet the increasing demand for bioenergy due to
large-scale industrialization. These non-agricultural
coastal lands are suitable for halophyte development but
not for the traditional grain crops because the lands are
extremely saline and because of other associated con-
straints such as drought and nutrient deficiency [48].

The process of soil salinization
Soil salinization – high concentration of salts on or near
the soil surface – is a chronic problem in many arid and
semi-arid regions where evapotranspiration (ET) exceeds
rainfall [49]: ET removes pure water as vapour from soil,

Fig. 4 Salinity classes for different water types
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concentrating the salts in soil solution. However, humid
climates are not free of salinization either.
‘Primary salinization’ occurs in arid and semi-arid cli-

matic zones. In addition to geochemical weathering of
minerals present in rocks, a distinction is drawn between
salt supply by precipitation and that from groundwater:
the former contains dissolved salts from the atmosphere
mainly originating from the sea, the so-called atmogene
salts. Quickly leached in humid climates, these atmogene
salts typically accumulate in soil in arid or semi-arid cli-
mates. Therefore, desert soils are typically salty. The
amount of accumulated salts depends on the distance
from the sea, rate of precipitation, duration of arid con-
ditions, topography, and conductivity of soil water.
Groundwater salinization in humid climates occurs only
in those areas that are close to the sea, e.g. in marsh-
lands without any dykes or ditches for drainage. In arid
climates, groundwater-influenced soils are often
enriched with salts. The rise of groundwater through ca-
pillaries brings the salts upwards from the deeper layers;
once the water evaporates, salts accumulate in the sur-
face layer according to their chemistry: CaCO3 at lower
levels; gypsum, sodium carbonate and Na2SO4, at inter-
mediate levels; and finally Na+ and Ca2+ and nitrates at
the upper levels. This can lead to salcretes in the subsoil
or salt crusts at the soil surface.
Artificial soil salinization as a consequence of direct

human activity is referred to as ‘secondary salinization’.
Salinization was earlier thought to be an environmental
problem restricted to arid regions, whereas now it is rec-
ognized as a global environmental concern affecting
humid regions as well—a result of artificial inputs in the
form of road de-icers, sewage, and water softeners [50].
However, the most severe impacts of salinity on agricul-
ture occur in arid and semi-arid regions. Climate
change, with the predicted hotter and drier conditions,
will aggravate the problem of salinity in many regions,
together with the impacts of such anthropogenic activ-
ities as the use of marginal water sources, saltwater in-
trusion due to overexploitation of coastal aquifers, and
rapid and unsustainable withdrawal of water from inland
aquifers before they are fully recharged [49]. Salts enter
soil through diverse pathways, but the main driver of an-
thropogenic salinization is the misuse and mismanage-
ment of rapidly expanding irrigation [51]. Artificial
raising of the water table due to inadequate drainage can
also make soils saline, similar to the process of primary
salinization [52]. Highly saline drainage water carries the
risk of contaminating or even degrading the associated
groundwater and surface water.
Disturbance to natural vegetation can lead to a hydro-

logic imbalance between precipitation and ET. Replacing
plants that have high rates of ET (forests) with plants
that have low rates of ET (crops) in tracts in which the

water table is high, e.g. by permitting overgrazing on
pasture lands, the groundwater may rise further, bring-
ing with it dissolved salts, which may accumulate close
to the soil surface forming saline or sodic soils. Intensive
agriculture with expanded irrigation as well as using
marginally saline water for irrigation will affect an
already fragile environment and could threaten the sus-
tainability and functioning of such agro-ecosystems [51].
In general, soil salinization has been shown to be re-

versible under an efficient drainage network [53]. In
such cases, investing in an efficient drainage system may
pay off: halophytes may be cultivated initially, when sal-
inity levels are high, for biofuel production, until the de-
salination strategy is successful in restoring the soil so
that crops can be cultivated for food, supported by judi-
cious irrigation. A multi-year rotation could be estab-
lished that alternates between halophytes and crops.

Physical chemistry of soils and sediments in saline
environments
Salinization in irrigated agricultural soils is typically a
process that takes years or decades. In order to analyse
the altered physical chemistry of soils during
salinization, several experiments were conducted involv-
ing salty or brackish water for irrigation [54]. Among
the direct affects was a significant increase in the con-
centrations of chlorides, sodium, sulphur, and potassium
in the free water (water found in soil pores). Salt inputs
to the soil solution lead to exchange of cations such as
Na+, Mg2+, and K+ for those of Ca2+, H+, and NH4

+ from
the cation adsorption complex of the sediment [54]. In
clay minerals, iron can also be mobilized. When salts are
present at high concentrations, this exchange occurs
rapidly; as a result, calcium concentrations in free water
may exceed the initial concentrations [55].
Soil sodicity is often linked to soil salinity. Irrigation

with saline water leads to accumulation of monovalent
Na+-cations in soil solution, which can severely degrade
soil structure. Clay particles enter the dispersed phase
and the soil may swell, reducing aeration as well as the
hydraulic conductivity of the saturated soil significantly
and shifting the water retention curve towards smaller
pores. The effect of sodicity depends on the type of clay
and will be stronger in montmorillionitic soils (consist-
ing of 3-layer clay minerals) than in kaolinitic soils (con-
sisting of 2-layer clay minerals) and more common
under tropical climates.
Typical salt-affected soils, according to the World Ref-

erence Base for Soil Resources (WRB) soil classification
[56], are Arenosol, Calcisol, Gypsisol, Kastanozem,
Solonchak, and Solonetz (Table 1). Arenosols (Psam-
ments in the US soil taxonomy) are sandy soils in which
soil horizons are poorly differentiated. The geographical
distribution of Arenosols is not restricted to the deserts

Debez et al. Journal of Biological Engineering  (2017) 11:27 Page 6 of 19



of the world; they are also found in humid climates, e.g.
coastal dunes. With almost no natural vegetation, Are-
nosols are very poor in humus, and arable farming is pos-
sible only with intensive application of fertilizers. In desert
regions, such soils are often used for irrigated agriculture
because the large sand fraction ensures good drainage,
thereby lowering the risk of secondary salinization. Solon-
chaks (Salorthids) are pale or grey salt soils with a thick
saline horizon within 30 cm of the soil surface. They de-
velop in low-lying areas with a shallow groundwater table
(external Solonchaks): soluble salts are transported
through capillary action and accumulate in the topsoil or
at the soil surface. Salt crusts may develop to some extent.
Alternatively, in soils where the average groundwater level
is not that close to the surface, salts can accumulate at
greater depths (internal Solonchaks). In the latter case, the
source of salt is not typically the groundwater but saline
precipitation that occurs only under arid conditions. The
sparse natural vegetation leads to low humus content.
Artificial Solonchaks develop when salts introduced with
irrigation water are not properly removed through drain-
age. Solonetz soils (Natric great groups of several orders)
typically develop from Solonchaks by lowering of the
water table, high humidity, or groundwater with high Na+

content. The high Na+ saturation results in high pH, be-
tween 8.5 and 11, and supports the downward movement
of clay and humus. The developed clay horizon is charac-
terized by low permeability and low aeration, making such
soils particularly unsuitable for cultivation, even for halo-
phytes. Raising crops that are Na+-resistant or tolerant

could gradually make the soil more permeable and even-
tually suitable for intensive cultivation. Other salt-in-
fluenced soils relevant here are the Kastanozems (aridic
borolls and ustolls), steppe soils with massive humus top-
soil with lime and gypsum accumulation and soluble salts
in the subsoil. Calcisols (Calcids) and Gypsisols (Gypsids)
with substantial accumulation of secondary carbonates or
gypsum are often salt affected and then form subclasses of
Solonchaks and Solonetz, in which solid layers of lime and
gypsum in the subsoil often hinder cultivation as well as
rooting.
In addition to the high impacts of salinity on soil gen-

esis that builds individual salt soils, the nutrient dynam-
ics of free water are altered in all such soils during
salinization; therefore, the availability of nutrients to
plants also changes. The general pattern depends
strongly on soil conditions and is often not explicitly de-
terminable. The studies discussed below attempt to
identify a few trends related to the chemistry of soil.
The processes that are affected significantly are de-

nitrification (the reduction of nitrate (NO3−) to molecu-
lar nitrogen) and nitrification (the oxidation of ammonia
(NH4

+) to nitrate), because these are mainly driven by
microbial metabolism. In this context, the availability of
salt-tolerant microorganisms is particularly important
[57]. Increasing salinity and sodicity cause an exponen-
tial decline in potentially mineralizable nitrogen [58]. In
most plants, total shoot nitrogen uptake decreases under
saline conditions because it is accompanied by an in-
crease in chloride uptake [59]. However, sensitivity to

Table 1 Salt-affected soils and their suitability for cultivating halophiles for biomass provided adequate irrigation is available [65]

Soil Geographical distribution Potential to
cultivate halophytes

Comments

Arenosol Mainly on aeolian, but also on marine, littoral,
and lacustrine sands, e.g. in the Kalahari, Sahel,
various parts of the Sahara, central and western
Australia, the Near East and western China, sandy
coastal plains and coastal dune areas

++ High percolation losses during surface irrigation;
soil conservation measures necessary

Solonchak Arid and semi-arid parts of northern Africa, the
Near East, former Soviet Union and Central Asia,
widespread in Australia and the Americas

+ Irrigation should be accompanied by drainage
systems

Solonetz Semi-arid temperate continental climate, e.g. in
the Ukraine, the Russian Federation, Kazakhstan,
Hungary, Bulgaria, Romania, China, the United
States of America, Canada, South Africa, Argentina,
and Australia

+/− Deep ploughing to improve soil permeability;
irrigation with Ca-rich water

Kastanozem Eurasian short-grass steppe belt, the Great Plains
of USA, Canada, and Mexico; pampas and Chaco
regions of northern Argentina, Paraguay, and south-
eastern Bolivia

+++ Care has to be taken about secondary salinization
and wind and water erosion

Calcisol Often together with Solonchaks in arid and semi-
arid tropics and subtropics

+ Amelioration might be necessary to break lime
banks

Gypsisol Kazakhstan, Turkmenistan, Uzbekistan, the Libyan
and Namibian deserts, southern and central
Australia, and south-western USA

++ Rapid dissolution of soil gypsum may lead to
irregular subsidence of the land surface and
corrosion of concrete structures

(+++) highly suitable, (++) well suitable, (+) suitable, (+/−) rather unsuitable
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salinity depends on the ionic form of nitrogen, whether
nitrate or ammonia: nitrate uptake is markedly reduced
whereas ammonia uptake is not. In contrast, relative
growth rates decrease slightly in nitrate-fed plants but
remain unchanged in ammonia-fed plants [60].
Phosphorus concentrations in soil solution are also al-

tered by salinity, but whether they are increased or de-
creased remains uncertain, because experimental results
have been contradictory [61, 62]. However, phosphorus
immobilization and sorption are reported to be much
stronger than phosphorus mobilization and desorption
[54]. In addition to co-precipitation with calcium or cal-
cium carbonate, phosphorus can bind to newly formed
iron (hydr)oxides [63]. Therefore, experiments have
shown salinity-induced reduction in phosphorus concen-
trations in plant tissues [64]. On the one hand, such re-
ductions lower shoot growth; on the other hand, they
stimulate the formation of root hairs and lateral roots in
several plant species [59].
Salinity affects the production of CO2 in soil but the

estimated emissions differ substantially, so that a clear
picture cannot be provided here. However, significantly
decreased methanogenesis was documented [54, 65], be-
cause in sulphate-rich environments sulphate-reducing
bacteria were more performant than methanogenic bac-
teria when competing for organic substrates [66]. There-
fore, biomass for biofuel production on salt-rich soils
may have a greater effect on reducing greenhouse gases
than that on non-salty soils. Increased N2O production
under anaerobic conditions and low pH was reported for
lab experiments; however, the true ecological relevance
of the production of greenhouse gases (CO2, CH4, and
N2O) could not be assessed under field conditions [66].
The pool of soil organic carbon (SOC) is dependent on

inputs from vegetation, and the effects of salinity and sodi-
city on plant health adversely impact SOC stocks in salt-
affected areas, generally leading to lower contents of SOC
[67]. Dissolved organic carbon (DOC) is known to be the
most mobile and dynamic among the non-living fractions
of soil organic matter and affects many biogeochemical pro-
cesses such as nutrient translocation and leaching, microbial
activity, and mineral weathering [68]. In salt-affected soils,
CEC and iron and aluminium concentrations strongly influ-
ence DOC sorption. It was reported that DOC loss from sa-
line–sodic soils is lower than that from sodic soils because
of cation bridging at high electrolyte concentrations and
suggest that increasing the electrolyte concentration in
sodic soils by liming or irrigation with saline water may re-
duce the loss of nutrients through leaching and increase or-
ganic matter sequestration [66, 69]. In salt-affected fields
where sugar cane cultivated, greater salinity and sodicity de-
creased soil microbial activity and nitrogen mineralization,
but no evidence of accumulation of soil organic matter was
found, due to reduced plant growth, which lowered the

inputs of organic matter to soil simply because reduced
plant growth means less biomass [58].
Another problem related to salt-affected soils is the

mobilization of heavy metals. The mobilization of Pb2+, Cd2
+, Cu2+, and Zn2+ appears to be regulated by several mecha-
nisms, e.g. the competition with Ca2+ or Mg2+ for sorption
sites or the complexation with chlorides or sulphates. Clay
and silt soils can reduce such mobilization of Cd2+ due to
salinization by strongly retaining the fine fractions [70].
A general positive side effect of cultivating halophytes for

biomass production is the elimination of herbicides: no
other plants can survive in this specific ecological niche.

Halophytes as potential sources of biodiesel and
bioethanol
The lignocellulosic biorefinery concept encompasses the
use of biomass to produce biodiesel, bioethanol, biogas,
biomethanol, hydrogen, charcoal, and other energy
sources [71]. However, this review focuses exclusively on
the potential of salt-tolerant plants as a source of bio-
diesel, and bioethanol. Biodiesel is composed of monoalkyl
esters of long-chain fatty acid derived from renewable
feedstock as well as vegetable oil and animal fats [72]. Bio-
diesel is generated from such oil-rich sources as sunflower,
soybean, oil palm, rapeseed, and rice bran whereas
bioethanol is produced by fermentation and could also be
generated from a variety of agricultural wastes.
Extremophile plants such as halophytes are considered

promising candidates for large-scale production of bioe-
nergy in the form of bioethanol, and biodiesel. Indeed,
biofuel from halophytic biomass may represent a sus-
tainable alternative to conventional fossil fuels in dealing
with the global issue of resources for human consump-
tion and the depleting stocks of fossil fuels [17, 47].

Halophytes as resources for biodiesel
Fatty acid methyl esters from halophytes appear to be an
economically attractive source for biodiesel production
and could be considered an important substitute in con-
ventional diesel engines [17, 47, 48, 73, 74]. To avoid the
competition between bioenergy crops and food crops, a
crucial step is to select the cheapest feedstock to pro-
duce biodiesel at low cost. In general, feedstock for bio-
diesel is classified into two categories: edible oils, which
are obtained from food crops such as rapeseed, soybean,
sunflower, and oil palm; non-edible oils, which are pre-
pared from such non-food resources such as Jatropha,
Pongamia, sea mango, algae, halophytes, animal fats in-
cluding chicken fat, and other sources as organic waste
or recycled oil [75, 76]. In fact, non-edible oils from
non-food resources are assuming a major role worldwide
in (i) meeting the increasing demand for bioenergy fol-
lowing large-scale industrialization and (ii) conferring
several other benefits, mainly because they use land or
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water that is unsuitable for crop production, decrease
the rate of deforestation, and provide useful by-products.
In addition, non-edible oils are economical and more
widely available than edible oils [75] (Table 2).
It is well known that seeds of numerous halophytes

contain significant amounts of oil and may serve as a
source of biodiesel [77]. More than 350 oilseed crops are
considered potential sources of biodiesel [76]. However,
at least 50 species of seed-bearing halophytes are
regarded as potential sources of grain and edible oil in-
cluding those with the highest quality seeds comparable
or even better than others seeds that are rich in carbohy-
drates, protein, and fat [78].
Cakile maritima and Sarcocornia ambigua, are oilseed

halophytes potentially useful in industry [79, 80]. Due to
the composition of fatty acid esters extracted from their
seeds, these species are promising candidates for bio-
diesel production [74]. Sarcocornia ambigua is a peren-
nial species, belonging to a genus of small, succulent
halophytic shrubs, and widely distributed in coastal
marshes, mangroves, and salt deserts of South America
[81]. Cakile maritima is a fleshy-leaved annual species
with a major ecological role in stabilizing sand dunes.
Seeds of C. maritima can germinate in up to 100 mM
NaCl and resume germination even after exposure to
200 mM NaCl [82, 83]. Moreover, the plant requires
moderate salt concentrations (100 mM NaCl) for max-
imal biomass production and seed yield, and its oil yield
and composition were not affected by up to 200 mM
NaCl salinity [64, 79]. These salt-tolerant species usually
exhibit optimal growth under salinity levels of 100–
200 mM NaCl, unlike conventional biofuel crops such as
canola, Jatropha, switchgrass or sugarcena, which appear
to be salt sensitive, as reflected by their severely reduced
growth even at low levels of salinity (Fig. 5).
A recent study pointed out that the oil content of

seeds of halophytes Salicornia bigelovii, Salicornia euro-
paea, and Suaeda aralocaspica is higher than those of
Pongamia pinnata (18%–27%), soybean (20%), Jatropha
curcas (29%–38%), and castor (Ricinus communis, 30%)
[84] Although they are rich in oil, castor, soybean, and
Jatropha are widely known to be sensitive to salt (Fig.
5). Seed oil content in Kosteletzkya pentacarpos is
close to 19% [85]. In fact, K. pentacarpos yields nearly

Table 2 Examples of biofuel halophytes

Salt threshold
(mM NaCl)

Reference

Halophyte species

Aeluropus lagopoides 150 [133]

Alhagi maurorum 500 [84]

Arthrocnemum macrostachyum - -

Atriplex nitens - -

Atriplex rosea 1000 [84]

Cakile maritima 200 [79]

Climacoptera brachiata - -

Climacoptera lanata 470 [134]

Cressa cretica 425 [135]

Cynodon dactylon 50–150 [136]

Desmostachya bipinnata 400 [100]

Euphorbia tirucalli - -

Halogeton glomeratus 100 [137]

Halopyrum mucronatum 90 [138]

Halostachys belangeriana - -

Haloxylon stocksii 500 [95]

Helianthus tuberosus 50–125 [139]

Jatropha curcas 60 [140]

Juncus maritimus 150 [141]

Karelinia caspia - -

Kosteletzkya pentacarpos - -

Kosteletzkya virginica 420 [84]

Leptochloa fusca - -

Miscanthus giganteus 80 [142]

Panicum turgidum 0,100, 200 [95]

Phragmites karka 500 [95]

Pongamia pinnata 150 [143]

Salicornia bigelovii 200 [47]

Salicornia europaea 500 [144]

Salicornia fruticosa 100 [92]

Sarcocornia ambigua 500 [91]

Spartina alterniflora 100 [145]

Sporobolus virginicus - -

Suaeda aralocaspica 500 [84]

Suaeda fruticosa 800 [146]

Suaeda paradoxa - -

Tamarix aphylla 150 [147]

Typha domingensis 100 [148]

Urochondra setulosa 200 [149]

Conventional species

Beta vulgaris 25 [150]

Brassica napus 24 [151, 152]

Table 2 Examples of biofuel halophytes (Continued)

40

Glycine max 25 [153]

Jatropha curcas 30 [140]

Panicum virgatum 0-50 [154]

Saccharum officinarum 20 [155]

Zea mays 20 [156]

- no information available

Debez et al. Journal of Biological Engineering  (2017) 11:27 Page 9 of 19



1500 kg/ha of seeds with a total oil yield of 330 kg/ha
[85–88]. Another facultative halophyte, R. communis (Eu-
phorbiaceae), with great potential as a good-quality bio-
diesel feedstock, is found in littoral habitats and salt
marshes. Seeds of R. communis contain as much as 47%–
50% oil and are rich in ricinoleic acid (87%). The latter
constitutes the major component of oil, because of which
the plant is considered among the most important renew-
able oil resources [48].
Salicornia bigelovii, a halophyte known for its high-

quality oil, is a leafless annual with green, jointed, and
succulent stems, which grows in salt marshes and is
widespread in many countries such as the United States,
Mexico, Saudi Arabia, the United Arab Emirates, Egypt,
Eritrea, and Pakistan [80, 89]. Salicornia bigelovii shoots
are thicker and more succulent when the plant is grown
at high salinity levels. This phenomenon, which is asso-
ciated with stimulated growth and water uptake, can be
explained by the efficient cellular accumulation of
sodium. The fact that S. bigelovii seeds contain approxi-
mately 28% oil, which is similar to soybean in oil quality
and yield [47, 90], makes it one of the most promising

oilseed crops. Fatty acids represent about 48% of the
total lipids (dry matter content is 21 mg/g) in Salicornia
spp. shoots, when irrigated with seawater. The compos-
ition was found to be constant even when the dry matter
was reported to be only 17 mg/g [91]. The latter can also
be converted to biodiesel or bio-derived synthetic paraf-
finic kerosene (Bio-SPK) through trans-esterification
[92–94]. Suaeda fruticosa is a facultative perennial halo-
phyte, found in inland and coastal salt marshes, salt de-
serts of Pakistan, and in northern, central, and southern
Tunisia. Seeds of S. fruticosa have recorded up to
400 mM NaCl during germination. The plant can grow
up to 2 m tall. Moreover, S. fruticosa can tolerate highly
saline substrates (up to 1000 mM NaCl). Its seeds con-
tain approximately 26% oil, which can be used to pro-
duce biodiesel [84, 95].
Cressa cretica can grow in coastal salt marshes of Ka-

rachi in Pakistan, and NaCl concentration in its seeds
during germination can reach up to 850 mM. Haloxylon
stocksii is a perennial with succulent stems and can
tolerate 500 mM NaCl during germination. Alhagi
maurorum, which thrives in salt marshes and coastal

Fig. 5 Performance (as per cent of dry mass in the control) of some halophyte species when challenged with increasing salinity (dS m−1) as
compared to that of conventional crops used for biodiesel production. The figure is a slight modification of that given by [132]
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areas in Pakistan, is also considered one of the most im-
portant halophytic sources of biodiesel. Arthrocnemum
macrostachyum, another perennial with succulent stems,
has also been identified as a promising source of bio-
diesel [95]. These species, including A. macrostachyum,
C. cretica, H. stocksii, and A. maurorum, contain ap-
proximately similar amounts of oil (25%, 23%, 23%, and
22%, respectively), but vary in their ash and sodium con-
tents [95]. Another potential candidate for biofuel with
positive prospects is the seashore mallow Kosteletzkya
pentacarpos, an oilseed halophyte that grows on saline
marginal lands [96], the seeds of which contain 18%–
22% oil, which is comparable to cottonseed oil, which is
edible, and shows some potential for biodiesel produc-
tion [97]. Kosteletzkya pentacarpos can yield up to
1500 kg/ha of seeds, or up to 330 kg/ha of oil [86]. In
addition, the Jerusalem artichoke (Helianthus tuberosus,
or topinambour) is widespread in the coastal zones of
China and is considered likewise one of the most prom-
ising sources of biomass energy. Jerusalem artichoke can
yield 1–3.8 t/ha of algal diesel, which is much higher
than the conventional oleaginous species such as castor,
sunflower, soybean, and cotton, which yield 430–705 kg/ha
of oil [98].
Fatty acid methyl esters from halophyte oils could be

considered competitive with oils that are conventionally
used for biodiesel production [95]. However, future re-
search is necessary to investigate seed production of hal-
ophytes in detail, which is one of the most important
criteria for the economic viability of their cultivation.

Halophytes as resources for bioethanol
Besides being a source of biodiesel, halophytes are also
considered to be promising feedstock for producing
bioethanol from the degradation of sugar-containing
biomass. Some halophyte plants with biodiesel potential
are for instance shown in Fig. 6. The most important
prerequisite, beside rapid growth and high biomass
productivity, is the production of releasable polysaccha-
rides including intertwined cellulose and hemicellulose,
which are embedded in the plant cell wall . Studies on
the spatial distribution of halophytes have shown the po-
tential of many such plants, e. g. about 365 species of
perennial and annual halophytes in Iran were identified
as a crucial source of bioethanol because they are rich in
lignocellulose [17]. More than 30 years ago, the Nobel
Laureate Melvin Calvin had recommended Euphorbia
tirucalli, a succulent desert plant from East Africa, as a
potential biofuel crop [99]. Other examples include halo-
phytic forage plants, such as Leptochloa fusca, Sporobolus
virginicus, and Spartina patens, which are rich in cellu-
lose/hemicellulose and low in lignin, which can be fer-
mented to ethanol after pre-treatment and enzymatic

degradation. The highest amounts of hemicellulose (25%)
and cellulose (29%) were recorded in S. virginicus [47].
Halopyrum mucronatum is a perennial grass with di-

morphic seeds that thrives well under seawater irrigation.
Biomass from this species contains approximately 37%
cellulose, 28% hemicellulose, and 5% lignin [100]. Desmos-
tachya bipinnata is a tall perennial grass found in inland
and coastal areas of Sind province in Pakistan. Its seeds
germinate at salinities as high as 400 mM NaCl [100]. Bio-
mass from this species consists of nearly 26% cellulose,
24% hemicellulose, and 7% lignin. Plants with low lignin
contents are preferred as feedstock of bioethanol because
the cost of the additional steps required for the separation
of lignin is minimized [95]. More interestingly, Phragmites
karka, a perennial reed, is highly productive with seeds

Fig. 6 Components of plant cell wall including lignin, hemicellulose,
and cellulose moieties. Cellulose degradation by a portfolio of
cellulases is shown in a simplified form. Cellulose deconstruction
yields monosacchardic glucose and small oligosaccharides by the
synergistic action of three types of cellulases, namely endoglucanases,
cellobiohydrolases, and β-glycosidases
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able to germinate under hypersaline conditions (500 mM
NaCl) [95]. Typha domingensis is a rhizomatous perennial
that can endure severe conditions such as moderate salin-
ity and flooding; its biomass contains approximately 26%
cellulose, 38% hemicelluloses, and 4% lignin, and Panicum
turgidum, a perennial halophytic grass, can tolerate as
high as 200 mM NaCl at the germination stage and pro-
duces biomass containing approximately 28% cellulose,
28% hemicellulose, and 6% lignin. In fact, P. karka and P.
turgidum, irrigated with 100 mM and 125 mM of NaCl,
respectively, maintain growth potentialities (in term of
biomass production) comparable to plants grown on non-
saline soils [74, 95]. These halophytes are rich in cellulose/
hemicellulose and low in lignin, a composition suitable for
efficient bioethanol production, and can thus strengthen
the feedstock for biofuels [17, 74, 100, 101].
A recent study assessed Juncus maritimus a salt marsh

plant that can be used for producing lignocellulosic bio-
mass, because its total carbohydrate content can reach
up to 73%, with cellulose and hemicellulose representing
approximately 41% and 31%, respectively, of the ligno-
cellulosic biomass [102]. Tamarix aphylla, irrigated with
reclaimed sewage (EC approximately 3 dS/m−1) to differ-
ent salinity levels or with brine (EC approximately 7–10
dS/m−1), produced 52 t/ha and 26 t/ha, respectively, of
organic biomass. Tamarix was selected for its high cellu-
lose content and low hemicellulose and phenol contents,
properties particularly suitable for ethanol production,
because the species of yeast commonly used for fermen-
tation prefer C6

− sugars to C5
− sugars [99, 103]. In recent

experiments, yield of Tamarix biomass, 18 months after
transplanting, increased 60-fold, especially when it was
irrigated with saline sewage (EC 8–10 dS/m−1 [97, 104].
However, polysaccharides must be released in all cases

from their densely packed structure within the cell wall
prior to enzymatic degradation, which implies efficient
pre-treatment processes and highly effective and stable
biocatalyst mixtures.

Enzymatic degradation of plant cell wall
Sugars derived from plant feedstock can be used for pro-
ducing chemicals and energy. Plant cell walls are com-
posed of complex molecules, mainly lignocelluloses,
which include cellulose, hemicellulose, and lignin [105].
The polysaccharides, namely cellulose and hemicellulose,
can serve as sources of bioethanol but need to be sepa-
rated from lignin prior to enzymatic decomposition. For
efficient enzymatic degradation of plant-derived biomass,
pre-treatment using a single agent or a combination of
different techniques is indispensable to separate lignin
from polysaccharidic residues. Yet, the outcomes of pre-
treatment are often dependent on the chemical interac-
tions between the pre-treatment agents and the plant
cell-wall properties. In addition, some byproducts of

pre-treatment may be inhibitory to cellulases and hemi-
cellulases. These processes, which have been recently
comprehensively reviewed [106], include a wide variety of
pre-treatment techniques encompasses physical (grinding,
fractionation, extrusion), chemical (acid, acid-acetone, alka-
line, mid-alkali, and organosolv), physico-chemical (steam
disintegration, hot water treatment, wet oxidation, fibre-
mediated expansion), biological (microbial, fungal, and en-
zymatic) and other (microwave, thermo-expansion)
methods. The available literature reports variable success in
the halophytes submitted to pretreatment processes. A re-
cent study was published on Salicornia sinus-persica for
which the juice fraction was investigated for direct fermen-
tation, and a hydrothermal pretreatment study was con-
ducted on the fibre rich pulp fractions. Mild pre-treatment
was performed to minimize energy inputs. The impact of
the applied pre-treatment conditions was evaluated by
studying the sugar recovery as well as the biomass ferment-
ability. Wet fractionation yielded 70% juice and 30% pulp.
Direct fermentation of the fresh juice using S. cerevisiae
had no salt-induced inhibitory effect on the yeast and etha-
nol yields of about 70% were obtained. Cellulose convert-
ibility of mildly pre-treated pulps was found to be
significantly higher for severity factors over 2.00 with the
best ethanol yield of 76.91 ± 3.03% was found at 3.06 [107].
In the halophyte plant Juncus maritimus, of the four fungal
species (Trichoderma spp., Aspergillus niger, Penicillium
italicum and Fusarium spp.) used as pre-treatment factors,
Trichoderma spp. yielded the highest enzymatic activities of
endoglucanase and beta-glucosidases [108]. In Spratina
argentiniensis, different pre-treatments (phosphoric acid,
ligninolytic enzymes and fungal supernatants) aimed
to remove lignin and improving cellulose hydrolysis
efficiency were assessed [109]. Results show that pre-
treatment with Pycnoporus sanguineus supernatant
improved fermentable carbohydrates availability, yield-
ing 56.84% cellulose hydrolysis. Finally, Salicornia
bigelovii was reported to require only low hydrother-
mal pre-treatment [110].

Enzyme portfolio to degrade plant cell wall
Based on biomass production worldwide, cellulose
(30%–50%) is the most abundant polymer and hemicel-
lulose (15%–35%) is the second most abundant polymer
on earth, and both represent fully renewable sources.
These polysaccharides are glued together and fixed by
lignin, resulting in a densely packed structure stabilized
through covalent and non-covalent linkages between cel-
lulose, hemicellulose, and lignin [111]. Lignocellulose
can be broken down by a number of glycoside hydro-
lases of prokaryotic or fungal origin [112]. Glycoside hy-
drolases specifically hydrolyse the glycosidic bonds
between carbohydrates or between a carbohydrate and a
non-carbohydrate moiety to produce monosaccharides
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that can be used for fermentation. Many enzymes
have been isolated and characterized from various
sources including gut bacteria from termites and rumi-
nants, hot springs, compost heaps, and soil [4, 113–116].
Due to the complex structure of lignocellulose, a large

portfolio of different glycoside hydrolases is needed to
decompose the polysaccharides cellulose and hemicellu-
lose. Three classes of cellulases act synergistically to de-
grade cellulose completely (Fig. 6) [111]. All enzymes
thus catalyse the same reaction, namely the hydrolysis of
beta-1,4 glycosidic linkages between glucose units in the
linear cellulose chain. The endoglucanase attacks glyco-
sidic bonds randomly at internal sites and produces
short- and medium-sized oligosaccharides, including di-
saccharides and glucose. An exoglucanase (cellobiohy-
drolase) cleaves the β-1,4 bonds in such a way that the
disaccharide cellobiose is released either from the redu-
cing or the non-reducing end of the poly- and oligosac-
charides. Finally, a β-glucosidase hydrolyses cellobiose to
give two molecules of glucose. Different isozymes also
separate glucose from short-length oligosaccharides such
as cellotriose or cellotetraose [117, 118].
The assessment and valorisation of lignocellulosic bio-

mass obtained from halophytic plants as feedstock for
biofuel are receiving increasing attention from re-
searchers [95]. Analysis of water extracts of halophyte
biomass revealed high concentrations of salt ions includ-
ing sodium and potassium, up to 150 mg/g and 18 mg/g
(dry weight basis), respectively [19, 95]. The degree of
salinity and the low concentrations of trace elements
and phosphorous impair the growth of microbial com-
munities that could be utilized for degrading halophytes.
To decompose the salt-rich biomass derived from halo-
phytes, an optimally adapted portfolio of enzymes with
isozymes that are active under such conditions might
serve as a promising approach to efficient production of
sugars from these substrates.

Examples of promising enzyme candidates
A variety of microorganisms colonize salty, hot, and dry
soils that serve as ecological niches for halophytes [119].
Such microorganisms include prokaryotes and lower eu-
karyotes such as bacteria, Archaea, and filamentous
fungi and can be assigned to the category of extremophi-
lic microorganisms—microorganisms that thrive in envi-
ronments that are considered extreme from the
anthropogenic point of view. Beside truly halophilic mi-
croorganisms, there are many pro- and eukaryotic spe-
cies that have been described as salt tolerant. These
species are adapted to grow at high salt concentrations,
but also survive without any salt in the medium, whereas
true halophiles require salt for growth and prefer not
only coastal dunes, hypersaline lakes, seas, salted foods,

and saline deserts, but also halophytes that excrete and
accumulate salts on the surface of their leaves [120].
Since extremophilic microorganisms thrive in the most

inhabitable environments on the planet, it has been
speculated that their enzymes are also capable of with-
standing such conditions, which make the enzymes valu-
able under industrial conditions. Given their origin,
enzymes from extremophilic microorganisms are called
extremozymes [121]. Extremozymes from salt-tolerant
microorganisms that can catalyse biochemical reactions
over a wide range of salinity might be useful not only in
the degradation of plant biomass derived from halo-
phytes but also in many other harsh industrial processes
involving highly concentrated salt solutions.
Only very few biomass-degrading enzymes have been

isolated and characterized from true halophilic species.
However, several cellulases and xylanases can tolerate
extreme salinity and may have some potential as
biomass degraders under such conditions (Table 3).
Endoglucanase was obtained from the halophilic micro-
organism Halomonas sp. strain S66-4, a recombinant
form, in a non-halophilic host E. coli and purified to
homogeneity. The enzyme was salt tolerant up to 5 M of
NaCl and yet retained more than 40% of its activity
when tested directly in saline incubation mixtures [122].
A recent example of a salt-tolerant cellulase is the endo-

glucanase EG2 from the filamentous ascomycete Stachy-
botrys microspora. The enzyme displayed optimal activity
at 850 mM NaCl and was active at concentrations up to
2.56 M and was considered highly suitable for producing
bioethanol [123]. Several moderately salt tolerant and
alkaliphilic ascomycetes were isolated from a Saharan salt
flat (a sabkha) in southern Tunisia. Such sabkhas are colo-
nized not only by lower eukaryotes or prokaryotes but also
by halophytes. A single isolate of the genus Penicillium
was found to secrete cellulases, indicating its potential to
degrade plant cell walls of halophytes that inhabit identical
environments. Such extracellular and extremely stable
hydrolytic enzymes are common in extremophilic micro-
organisms, reflecting effective utilization of rare nutrient
compounds in harsh environments.
Several salt-tolerant biomass-degrading enzymes are not

derived from halophilic microorganisms at all (Table 3).
An endoglucanase (Cel5A) from the thermophilic bacter-
ium Thermoanaerobacter tengcongensis strain MB4 dis-
played almost 50% residual activity when incubated in the
presence of 4 M KCl and 3 M NaCl. This microorganism
thrives at a concentration of 0.03 mM of NaCl, at a lower
ionic strength than that for optimal activity of the
enzyme. Salt bridges are formed between amino acid
carboxyl groups and sodium ions (R-COO−–Na+-−
−OOC-R) to impart stability. Moreover, the enzyme
Cel5A was stable in different ionic liquids used as
solvents for degrading industrial cellulose [124].
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Another bacterial endoglucanase was identified in the
moderately salt-tolerant prokaryote Thalassobacillus
sp. strain LY18. The enzyme was stable between 30 °C and
80 °C and in the presence of NaCl at concentrations up to
20% (w/v); moreover, based on its tolerance to organic
solvents, the enzyme was the first endoglucanase to
be described that is optimally active at high tempera-
tures, high salinity, and at high pH values in organic
solvents.
Only a few salt-active glycoside hydrolases have been

described that have been genetically or biochemically
modified to serve as efficient decomposers of biomass, e.
g. a salt-dependent endoglucanase from the alkaliphilic
microbial species Bacillus sp. strain BG-CS10. This bac-
terium can grow at a wide range of salt concentrations
(0%–18% NaCl in the medium) and produces a large
variety of extracellular glycoside hydrolases including
xylanases, amylases, and mannanases. The cellulase CelB
displayed a temperature profile that was regulated by salt
concentration: the optimum temperature turned out to
be 55 °C in the presence of 2.5 M NaCl but 35 °C when
no NaCl was added, and enzymatic activity at 55 °C in-
creased tenfold when 2.5 M NaCl or 3 M KCl was added
to the reaction solution. The authors concluded that the
thermostability of the enzyme can be controlled by add-
ing NaCl [125].
Due to the complex structure of lignocellulosic mate-

rials, a portfolio of enzymes that are capable of acting in
synergy is important for complete hydrolysis of polysac-
charides and generation of fermentable sugars, which

opens the way for the application of novel engineering
techniques.

Conclusion
Nowadays, the bulk of energy and products of the fuel
and chemical industry are derived from fossil fuels.
However, a transition from fossil-fuels-based industry to
a widely applied bio-based industry is highly desirable in
the energy and chemicals sectors. The potential of halo-
phytes in biofuel production is reviewed here, including
their characterization and the analysis of potential re-
gions worldwide for their cultivation with focus on soil
conditions. Specific species have been identified as
sources of biodiesel and bioethanol, as well as enzymes
to degrade the cell walls of those species. The review
concludes by discussing several methods of producing
bioethanol.

Future research directions
Treated water and produced water for irrigating halophytes
Suitable ecosystems and halophyte habitats are highly
dependent on different species and need be analysed
in terms of those species. The comparative advantages
and disadvantages of such species also need to be ex-
amined. Another approach is to investigate whether
saline water in the form of treated wastewater or that
produced during oil production can be used to irri-
gate halophytes. Further research is also required into
these resources that are not linked at present to
specific soils or habitats.

Table 3 Some examples of salt-tolerant biomass-degrading enzymes and their properties

Enzyme Species and strain Salt tolerance Optimum temperature (°C) Reference

Halophilic species

Cellulase Halomonas sp. S66-4 5 M NaCl 45 [122]

Cellulase Haloarcula sp. LLSG7 30% (w/v) NaCl 50 [157]

Cellulase Haloarcula sp. G10 27.5% (w/v) NaCl 60 [158]

Xylanase Uncharacterized strain CL8 5 M NaCl 60 [159]

Xylanase Uncharacterized strain CL8 5 M NaCl 65 [159]

Xylanase Halorhabdus utahensis 27%–30% (w/v) NaCl 55 and 70a [160]

Salt-tolerant species

Cellulase Aspergillus terreus UniMAP AA-6 7.7% (w/v) NaCl 30 [161]

Cellulase Marinobacter sp. MSI032 2% (w/v) NaCl 27–35 [162]

Xylanase Bacillus sp. NTU-06 5% (w/v) NaCl 40 [163, 164]

Cellulase Stachybotrys microspora 2.56 M NaCl 50 [123]

Cellulase Bacillus sp. BG-CS10 2.5 M NaCl, 3 M KCl 55 [125]

Cellulase Brine shrimp (Artemia salina) 600 mM NaCl 55 [164]

Cellulase Thalassobacillus sp. LY18 10% (w/v) NaCl 60 [165]

Cellulase Bacillus agaradhaerens 2 M NaCl, 0.8 M KCl 60 °C [166]

Cellulase Thermoanaerobacter tengcongensis MB4 3 M NaCl, 4 M KCl 75–80 [124]
aTwo independent optima of activity were determined
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Side effects of cultivating halophytes
Halophytes for bioenergy need to be grown on a large
scale if they are prove economically feasible and
competitive with other energy sources. Such large-scale
cultivation may have both positive and negative side ef-
fects, some of which are mentioned here.
A major question is the productivity of halophytes. Re-

search is necessary to assess the productivity of halo-
phytes accurately, since productivity is one of the most
important criteria for the economic viability of halo-
phyte cultivation.
In general, the costs of cultivating halophytes are com-

parable to those of conventional agriculture if we take into
account the need to reduce CO2 emissions, to use arable
land and freshwater resources carefully, and to reduce our
dependence on oil. These considerations make halophytes
more advantageous than algae, cyanobacteria, and organic
waste, which are commonly used as feedstock for biofuel.
Due to the fact that methanogenic microorganisms are
outcompeted halophiles in salty environments, producing
biofuel from biomass grown on salt-rich soils may con-
tribute more to reducing the emissions of greenhouse
gases than that grown on normal soils.
Mavi et al. [69] found that the loss of DOC from saline–

sodic soils is lower than that from sodic soils because of
bridging of cations at high electrolyte concentrations and
suggest that increasing the concentration of electrolytes in
sodic soils by liming or by irrigating with saline water may
reduce the loss of nutrients through leaching and increase
organic matter sequestration. However, as some regional
environments may be particularly vulnerable and may be
affected adversely by intensive agriculture, an analysis of
specific local conditions and assessment of ecological im-
pact are mandatory.

Improving bioenergy production from halophytes
Another future option would be to dissolve lignocellu-
lose material from halophytes in saline ionic liquids,
which are well established as alternative and ‘green’ sol-
vents to be used in the pre-treatment of the walls of
plant cells prior to enzymatic hydrolysis [126]. Lignocel-
lulosic biomass from halophytes for ethanol production
proved advantageous both in term of high net productivity
and low maintenance costs [17]. Considering the advan-
tages of second-generation biofuels, it is recommended
that biofuel production be increased up to 10–20 EJ a year
by 2050 [127] and the share of biofuels in the transport
sector be increased from 3% to 8% worldwide between
2013 and 2035 [128].
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