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Engineering the human blood-brain barrier
in vitro
John J. Jamieson1,2, Peter C. Searson2,3* and Sharon Gerecht1,2,3*

Abstract: The blood-brain barrier (BBB) is the interface between the vasculature and the brain, regulating molecular and
cellular transport into the brain. Endothelial cells (ECs) that form the capillary walls constitute the physical barrier but are
dependent on interactions with other cell types. In vitro models are widely used in BBB research for mechanistic studies
and drug screening. Current models have both biological and technical limitations. Here we review recent advances in
stem cell engineering that have been utilized to create innovative platforms to replicate key features of the BBB. The
development of human in vitro models is envisioned to enable new mechanistic investigations of BBB transport in central
nervous system diseases.
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Background
Neurons in the brain require a chemically stable envir-
onment, insulated from fluctuations in blood compo-
nents in circulation [1–3]. The BBB maintains
homeostasis by regulating molecular transport between
the cardiovascular system and the central nervous sys-
tem (CNS), and also protects the CNS by restricting the
entry of xenobiotics and immune cells that could cause
inflammation [4].
The physical integrity of the barrier is derived from

the endothelial cells (ECs) that line the brain microvas-
culature and tightly control paracellular and transcellular
transport [2]. Paracellular transport is restricted by tight
junctions (TJs) that stitch together adjacent ECs, while
transcellular transport is regulated by a combination of
specialized transporters and efflux pumps. Transporters
supply essential nutrients to the brain, while efflux
pumps counter the passive entry of small molecules, in-
cluding many toxins, but also many potential therapeu-
tics. ECs in the CNS are supported structurally and
functionally by pericytes, basement membrane, and as-
trocytes [5]. Interactions between these components
contribute to the development and maintenance of the
healthy BBB [6–8], although the relative contributions of

each component and the specific mechanisms by which
these processes occur is an area of active research, which
will be discussed in more detail later.
The intact BBB constitutes a major roadblock for drug

delivery, as 98% of small molecules are unable to enter
the brain [9]. Strategies to enhance delivery have in-
cluded either modifications to therapeutic agents,
exploiting receptor-mediated transport systems [10], or
temporary disruption of the BBB,for example by osmotic
agents [11] or focused ultrasound (FUS) [12]. Ap-
proaches to take advantage of receptor-mediated trans-
port (RMT) systems, including the Transferrin receptor
(TfR), have had some preclinical success in delivering
protein therapeutics [13]. Developing new CNS therapies
or delivery techniques requires a detailed understanding
of the mechanisms of BBB transport, as well as extensive
testing and optimization in model systems.
The sequence of steps in drug development generally

include in silico modeling, testing in in vitro models,
studies in animal models, and human trials. Animal
models have been shown to lack consistent predictive
value for humans, with 50% of results not translating into
human responses [14]. Cross-species differences in the
BBB limit, and in some cases prohibit, the applicability of
animal models. For example, recent studies compared the
expression levels of TJ proteins and transporters
expressed by various mammalian species used in preclin-
ical trials [15–17]. The results of several of these studies
have recently been tabulated (see Table 1 in [18]). Not-
able findings included differences in the expression of the
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efflux transporters Breast Cancer Resistance Protein
(BCRP) and P-glycoprotein (P-gp) (1.85-fold higher and
2.33-fold lower, respectively, in humans as compared
with mice), as well as a 5-fold reduction in L-type amino
acid transporter-1 (LAT-1) in humans as compared with
mice [15]. Lastly, several transporters reported in the ro-
dent BBB were not detected at all in the human BBB [15].
The differential expression of transport proteins across

mammalian species can affect drug uptake, leading to
potentially unpredictable clinical results when moving
towards human trials. One study noted that the com-
mon marmoset is a better predictor of human BBB
transport than either Sprague Dawley or Wistar rat
models, as most of the marmoset transporter proteins
tested were within two-fold of human expression levels
[17]. However, some BBB disorders cannot be studied in
animal models, such as forms of meningitis caused by
human-specific pathogens [19]. These limitations high-
light the need for a human in vitro model to study BBB
dysfunction in CNS disease progression and to help pre-
dict drug transport across the human BBB in vivo.
The development of human BBB models has been ac-

celerated by recent advances in stem cell biology. Hu-
man induced pluripotent stem cells (hiPSCs) can be
used to generate each of the cell types contributing to
the BBB [20–24]. Importantly, hiPSCs can be derived
from patients, allowing for the generation of both dis-
eased and healthy versions of each cell type, which can
be used to identify cell type-specific defects responsible
for BBB dysfunction in disease progression. Two recent
studies each used this approach to identify defects in
brain microvascular endothelial cells (BMECs) derived
from patients with Huntington’s Disease [25] and Allan-
Herndon-Dudley syndrome [26]. Though not a replace-
ment for animal models, a fully human in vitro model

could complement animal models by providing a con-
trolled, high-throughput system free from cross-species
differences.
The goal of this review is to define the challenges asso-

ciated with recapitulating the human BBB in in vitro
models and to provide perspective on future model de-
velopment. First, the BBB’s salient features will be out-
lined and its cellular components reviewed. Then, design
criteria for developing a dynamic, multicellular, human
BBB model will be established and recent progress to-
wards these goals will be reviewed.

The BBB and the neurovascular unit
The majority of transport between the vascular system and
the brain occurs in brain microvessels, as these comprise
approximately 95% of the area between the brain and the
vascular system [27]. The BBB includes BMECs, basement
membrane, pericytes, and astrocyte end-feet. (Fig. 1a).
These components physically and biochemically interact in
order to maintain barrier function. While BMECs are the
cells directly responsible for restricting and regulating
transport, the surrounding layer of basement membrane
embedded with pericytes provides structural support and
depots for molecular signals that regulate EC function. The
microvessels are surrounded by protrusions from astrocytes
that terminate in end-feet, which play important roles in
maintaining homeostasis [28] and regulating blood flow to
regions of high neuronal activity [29]. As a result of the co-
ordinated interactions between BMECs, pericytes, astro-
cytes, neurons, and CNS immune cells, this group is often
collectively referred to as the neurovascular unit (NVU).

Brain microvascular endothelial cells (BMECs)
BMECs are morphologically, biochemically, and func-
tionally distinct from non-brain ECs. In addition to

Table 1 Sources of cells used to replicate BMEC function

Barrier Cell
Source

Origin (cell line) TEER (Ω cm2) Advantages Disadvantages References

Immortalized • canine kidney
epithelial (MDCK)

• human colon
adenocarcinoma
epithelial (Caco-2)

• mouse BMEC
(BEnd.3)

• rat BMEC (RBE4)
• human BMEC
(hCMEC/D3 and hBMEC)

40–315
compiled in [96]

• stable over numerous
passages

• commercially available
• can be transfected to
express human efflux
pumps (MDCK)

• incomplete tight junctions
• poor barrier function

[53, 99, 123]

Primary Mouse, rat, porcine,
bovine, human BMECs

130–2200
compiled in [96]

• close initial resemblance to
in vivo conditions

• tedious purification with
low yields and batch variability

• senesce after few passages
• difficult to obtain healthy
tissue (human)

[98, 124–126]

PSC-derived Mouse or human iPSC or
ESC

250–5350
[19, 101, 102]

• renewable source
• patient specific
• physiological TEER

• require differentiation and
thorough characterization

[20, 101, 102, 112]
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expressing conventional adherens junction (AJ) proteins
such as VE-cadherin and PECAM, adjacent BMECs are
stitched together by TJs, reducing paracellular transport
between neighboring cells [30] (Fig. 1b). TJs are formed
by interactions between transmembrane proteins includ-
ing claudins, occludins, and junctional adhesion mole-
cules (JAMs), which are linked to the cytoskeleton
through TJ adapter proteins such as zonula occludens-1
(ZO-1) and cingulin. BMECs also lack fenestrations and
exhibit reduced transcytosis relative to non-brain ECs
[31, 32].
Although TJs and reduced transcytosis indiscrimin-

ately restrict the transport of ions and molecules, the se-
lectivity of the BBB is imparted by polarized expression
of several classes of nutrient transporters and efflux
pumps (Fig. 1b) that have been reviewed elsewhere [2].
Here we highlight several systems that could be exam-
ined in order to demonstrate BMEC polarization and
transport in an in vitro system.
One class of polarized transporters is the solute carrier

(SLC) family, which enables the passive transport of polar
nutrients essential to CNS function, such as glucose
(Glut-1) and amino acids (LAT-1, among others). Differ-
ential expression of these transporters on the luminal and
abluminal membranes of BMECs regulate CNS nutrient
uptake and waste removal. Another class of polarized
transporters is the efflux pumps of the ATP-binding cas-
sette (ABC) superfamily. Small lipophilic molecules, which
would typically diffuse through non-brain ECs, are actively
effluxed back to the blood by BMECs. Notable efflux
pumps include P-gp, BCRP, and Multidrug Resistance-
associated Proteins (MRPs) [2]. Efflux pumps often work
in tandem with metabolizing enzymes, together breaking
down and pumping out potentially toxic substances, in-
cluding many conventional therapeutics [27].

For larger molecules and proteins, such as transferrin,
insulin, and IgG, transport is usually receptor-mediated
(RMT) or adsorptive-mediated (AMT) [2] (Fig. 1b). Ef-
forts to deliver therapeutics through these pathways are
informed by studies into the kinetics of receptor intern-
alization and recycling, and the effects of ligand design
on these parameters [9]. Many of the receptors involved
in RMT are poorly characterized, bind multiple ligands,
and exhibit multiple functions. Advances in the under-
standing of these mechanisms and their regulation could
result in improved methods of drug delivery to the CNS.
The unique properties of BMECs are induced by the

surrounding neuroectodermal environment during de-
velopment, although the exact mechanisms responsible
remain poorly understood [33]. Initial evidence from
quail-chick chimera transplantation studies showed that
non-CNS tissue grafted to the brain could develop BBB
characteristics, while CNS-tissue grafted to non-CNS re-
gions could not [33]. Recent studies have identified sev-
eral pathways believed to be critical to BBB induction and
maintenance, including hedgehog (Hh) [6] and canonical
Wnt signaling [34, 35]. The importance of Wnt/ β-catenin
signaling was further demonstrated by β-catenin-deficient
mouse embryos that exhibited widespread vascular defects
in the CNS while peripheral vessel formation was un-
affected [36].
In addition to molecular signaling, many important char-

acteristics of BMECs may be induced by hemodynamic
forces, including shear stress (approximately 5–20 dyne cm
−2 in capillaries [3, 37, 38]) Shear stress has been shown to
activate mechanotransduction pathways in ECs influencing
the expression of genes regulating functional behavior in-
cluding proliferation, migration, and inflammation [38–40].
While these effects have been broadly documented across
ECs of other organs, the response of BMECs to shear stress

Fig. 1 Structure and function of the BBB. (a) Schematic representation of the cell types that form the NVU. (b) Paracellular and transcellular
pathways of molecular transport across the BBB
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appears unique. While human umbilical vein endothelial
cells (HUVECs) elongate in the direction of flow, BMECs
instead remain rounded [41, 42]. Other physical character-
istics of capillaries, such as the degree of vessel curvature,
have been shown to elicit elongation and alignment from
HUVECs but not from immortalized BMECs, providing
further evidence of their unique phenotype [43]. Despite
these advances, many details of the phenotype of BMECs
remain to be resolved.

Pericytes
Pericytes play an important role in vascular develop-
ment, as they are recruited to stabilize nascent vessels
and promote vascular maturation [7, 44]. Pericyte re-
cruitment is driven in part by EC expression of platelet
derived growth factor (PDGF) [44]. As pericytes are
found throughout the body, their role in BBB induction
and maintenance was mostly overlooked until several
groups demonstrated their importance in vivo [8, 45, 46].
Pericyte-deficient mice display abnormal, leaky vascula-
ture with an increased rate of transcytosis [8, 45]. Add-
itionally, improper localization of aquaporin 4 (Aqp4) in
astrocytes in pericyte-deficient mice suggests that peri-
cytes influence the polarization of astrocyte end-feet, and
mediate the attachment of end-feet to CNS vasculature
[45], although a separate study observed normal astrocyte
attachment in pericyte-deficient mice [46]. Furthermore,
as pericyte-deficient mice aged, they experienced progres-
sive BBB breakdown and cognitive impairment, demon-
strating that pericyte loss can precede neurodegenerative
effects [46]. These in vivo studies have collectively shown
that pericytes may coordinate NVU assembly and play a
key role in BBB induction and maintenance. They also
suggest that pericytes predominantly exert this effect
through the inhibition of transcytosis, rather than the
induction of BBB-specific transporters or TJ forma-
tion [8, 45, 47].
The effects of pericytes on BBB function have also

been studied in vitro. Pericytes co-cultured with various
sources of BMECs have been found to increase barrier
function, albeit to greatly differing extents [48–53], and
have also been found to interfere with barrier function
under certain conditions [54, 55]. The mechanisms by
which pericytes regulate BMECs are not fully under-
stood, however, PDGF, VEGF, TGF-β, and Notch path-
ways are implicated (reviewed in [44]). Although
transwell models have been used to study paracrine sig-
naling pathways, physical connections between pericytes
and ECs have also been reported to play important roles
in vivo, transmitting mechanical forces through adhesion
plaques [56], and transporting signaling molecules dir-
ectly through gap junctions [57].
An important question regarding BBB induction by

pericytes is how this interaction is localized to the CNS,

as pericytes are found throughout the body. Interestingly,
while most pericytes are believed to be of mesodermal
origin, some studies have suggested that CNS pericytes
derive from the neural crest [58–61], and thus may be
functionally distinct from peripheral pericytes [8]. Add-
itionally, the increased ratio of pericytes to ECs found in
the brain (1:3–1:1, as compared to 1:100 in skeletal
muscle) further support an important role for pericytes in
BBB function, as increased pericyte coverage throughout
the body has been correlated with increased vessel tight-
ness [62].

Basement membrane
The basement membrane (BM) is a thin layer of extra-
cellular matrix (ECM) surrounding the microvasculature.
The BM interacts with cells through physical and bio-
molecular pathways to mediate cell attachment and dif-
ferentiation. There are two layers of BM, with distinct
composition, referred to as the vascular (or endothelial)
BM and the parenchymal BM, located abluminal to the
ECs and PCs, respectively [63]. In capillaries, these
membranes are fused, while in post-capillary venules,
they are separated by a perivascular gap, known as the
Virchow-Robin space, a key location for leukocyte traf-
ficking and immune cell regulation [4, 19, 64].
The BM is composed of highly cross-linked networks of

structural and specialized proteins collectively secreted by
endothelial cells, pericytes, and astrocytes [65]. Type IV
collagen and laminin are each capable of self-assembling
networks, which are then interconnected by nidogens and
heparan sulfate proteoglycans, such as perlecan [63].
There is a rich complexity in BM composition, as over 50
other glycoproteins have been found in varying quantities
as minor components. Furthermore, multiple isoforms of
each BM component exist and many exhibit distinct bind-
ing profiles [63]. These specialized BM proteins bind
transmembrane proteins including integrins, anchoring
ECs and pericytes in place, and transducing signals to the
actin cytoskeleton which regulate cellular behaviors and
promote quiescence [65].
The functions of various BM proteins have been in-

formed in part by studies on knockout mice. Recent knock-
out studies revealed that astrocyte-derived laminin-211 is
critical for maintaining BBB integrity [66, 67]. Interestingly,
this effect was reported to act through the regulation of
pericyte differentiation [66], in agreement with an earlier in
vitro study which suggested that α-SMA- and α-SMA+ peri-
cytes raise and lower TEER, respectively [55]. This demon-
strates the ability of BM compositional changes to serve as
an intermediary in BBB cell-cell signaling and regulation.
The BM can become altered by protease activity in re-

sponse to inflammation or disease. Cytokines produced by
astrocytes and pericytes, such as interleukin (IL)-6, can trig-
ger EC release and activation of matrix metalloproteinases
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(MMPs), which are capable of degrading ECM components
[68]. MMP-2 and MMP-9 can proteolyze collagen IV, elas-
tin, and fibronectin, while MMP-2 can additionally cleave
laminin [69]. Loss of BM may lead to BBB dysfunction, as
BM disruption has been shown to promote cytoskeletal al-
terations in ECs that affect TJs [69]. BM thinning has also
been observed to precede pericyte migration away from the
endothelium [70] and detachment of astrocyte end-feet [4].
The various pathways by which BM modifications influence
BBB function deserve further study. Relatively few in vitro
studies have addressed BM interactions in the BBB, and
these have generally been performed on models far more
simplistic than the in vivo BM [54, 68, 71–73].

Astrocytes
Astrocytes mediate signaling between neurons and
BMECs. Astrocyte processes are terminated in end-feet
that completely ensheath microvessels and capillaries in
the brain [74]. A single astrocyte contacts on average
five different blood vessels and four different neuronal
somata, supporting the function of roughly 2 million
synapses [75, 76]. This position as an intermediary al-
lows astrocytes to coordinate key aspects of neurovascu-
lar coupling, including the regulation of blood flow to
match local neuronal activity [29].
Astrocytes have been shown to induce BBB function

by enhancing TJ formation, polarizing transporters, and
promoting specialized enzymes [77, 78]. Numerous in
vitro studies have confirmed that astrocytes secrete sol-
uble factors, including glial-derived neurotrophic factor
(GDNF), basic fibroblast growth factor (bFGF), and
angiopoetin-1 (Ang-1), which have been found to in-
crease barrier tightness [5, 77]. Astrocytes also secrete
Sonic hedgehog (SHh), retinoic acid (RA), and
angiotensin-converting enzyme-1 (ACE-1), which have
been shown to induce the expression of junctional pro-
teins in ECs [6, 79].

Neurons
There are approximately 100 billion neurons in the adult
brain [3], located on average, 10–20 μm away from the
nearest capillary [80]. Each neuron is extensively net-
worked to other neurons and glial cells through synapses.
At synapses, electrical action potentials are transduced to
molecular signals through the release of neurotransmit-
ters, such as glutamate. This release of glutamate initiates
a variety of neurovascular interactions, including the regu-
lation of blood flow to match neural activity patterns. This
appears to occur through at least two major pathways: (1)
raising Ca2+ levels in neurons resulting in the secretion of
nitric oxide, which dilates blood vessels, and (2) raising
Ca2+ levels in astrocytes, stimulating multiple pathways,
including the release of K+ ions to the vasculature

(reviewed in [29]). The role of neurons in regulating BBB
function remains poorly understood.

Immune cells
While not a structural component of the BBB, immune
cells are often included in the NVU as they have signifi-
cant influence on barrier function in response to injury
and disease. The two main CNS immune cell types are
microglia and perivascular macrophages. Microglia are
yolk-sac derived cells of myeloid lineage differentiated in
the brain parenchyma during embryonic development.
Immune activity of microglia is normally suppressed by
electrical activity of neurons [4, 81]. However, when acti-
vated, microglia express major histocompatibility com-
plex (MHC) Class I and II molecules and can assist
perivascular macrophages as antigen presenting cells
(APCs) [4, 81].
Perivascular macrophages also play an important role

in regulating immune cell trafficking across the BBB,
which often occurs in post-capillary venules [4]. In con-
trast with microglia, these cells are routinely replaced by
progenitors from circulation [82], demonstrating that
leukocytes can be transported across the healthy BBB.
Although the CNS is generally regarded as immune pri-

vileged in recognition of the fact that a proinflammatory
T-cell response is not generated when immunogenic ma-
terial is introduced to the brain parenchyma [81, 83], CNS
immune cells can recruit macrophages during an innate
immune response, and are able to generate a T-cell re-
sponse under certain circumstances through communica-
tion with the peripheral immune system. (For reviews, see
[4, 81]).

In vitro BBB modeling
In vivo studies in the human brain are limited to non-
invasive imaging, such as positron emission tomography
(PET) and blood oxygen level dependent functional
magnetic resonance imaging (BOLD fMRI) [84]. In vitro
models, such as variations of the transwell assay, have
been widely used to study BBB barrier function [27]. Re-
liable and reproducible sources of BMECs and support-
ing cell types has been a major limitation in these
studies. However, hiPSCs have provided a new source of
human BMECs, pericytes, and astrocytes that has en-
abled the study of the differentiation and development
of the human BBB.
The transwell assay is the most widely used in vitro

assay for BBB research, with applications in drug
screening and in mechanistic studies of BBB regula-
tion [27, 85–87]. In this assay, a confluent monolayer
of ECs is formed on a porous membrane that separates
apical and basolateral chambers (Fig. 2a). The addition of
astrocytes, pericytes, and/or neurons, or media condi-
tioned by these cells, in the basolateral chamber is often
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used to upregulate barrier function [48, 85]. The transport
of solutes or cells from the apical to basolateral chamber
can be used to determine permeability, mechanisms of
transport, and the role of inflammatory cytokines, patho-
gens, etc. [27].
The two most commonly used parameters for quanti-

tative assessment of barrier function are transendothelial
electrical resistance (TEER) and permeability. TEER
measurements can be performed in real time and are
not damaging to cells [88]. In the classical transwell
assay, a cell monolayer is cultured on a membrane in-
sert, with media on each side. A voltage (or current) is
applied between electrodes placed in the apical and
basolateral compartments, and the impedance is calcu-
lated based on the resulting current and normalized to
the surface area (Fig. 2a). While TEER values across hu-
man BMECs cannot be easily measured in vivo, TEER
values across rat and frog brain ECs have been measured
in the range of 1200–1900 Ω cm2 [89, 90]. In contrast,
non-brain ECs have a TEER of about 10 Ω cm2 [89].
TEER values for primary BMECs are highly variable,
dropping quickly after just 1–2 passages. Madine Darby
Canine Kidney (MDCK) cells, the most widely used cell
line in BBB research, typically exhibit TEER around 100
Ω cm2 [91], much lower than physiological BBB values.
Permeability (cm s−1) is defined as solute flux through

unit area under unit concentration gradient [3, 92]. Luci-
fer yellow and a range of molecular weight FITC-
dextrans are widely used to assess barrier function
(Fig. 2). Permeability across the BBB in rodents can be
measured using in situ brain perfusion, which involves ad-
ministration of a drug to the carotid artery and measuring
the drug concentration in the brain via radio-isotopes or
LC-MS/MS [93]. Permeabilities of small molecules ob-
tained from the transwell assay using MDCK (MDR-1
MDCK) type II cells, which have been transfected to over-
express the human P-gp efflux pump, show a reasonably

good correlation (R2 = 0.82) with in situ perfusion studies,
allowing a estimation to made for transport across the hu-
man BBB [92]. While the absolute permeabilities for a
given compound will typically be higher across MDCK
cells than for in situ perfusion, this correlation provides a
reasonable prediction, especially if the TEER value exceeds
a certain threshold (typically about 250 Ω cm2) [94]. Com-
pilations of TEER and permeability data from the trans-
well assay using various cell types can be found in the
literature [92, 95, 96]. For more information on the tech-
niques themselves, the reader is referred to reviews concern-
ing TEER measurement [3, 88] and permeability [3, 97].
Recapitulating the NVU with in vitro models is ex-

tremely challenging, and requires advances in many
areas. The first challenge is a source of BMECs that ex-
hibit tight junctions, low permeability, high TEER, and
polarized efflux transporters. The second challenge
is co-culture with other components of the NVU, in-
cluding astrocytes, pericytes and BM with the correct
spatial organization and biomolecular signaling. Third,
models should reproduce the cylindrical geometry of
brain capillaries, recapitulating the shear flow and curva-
ture associated with brain capillaries. In the next section,
we discuss sources of BMECs and other NVU cells that
are used to model BBB function in vitro, then review the
platforms used to configure these cells.

Cell sources
ECs from a variety of sources have been used to model
BBB function, including primary, immortalized, and PSC-
derived, across a range of mammalian species (Table 1). Pri-
mary BMECs are difficult to purify and lose BBB phenotype
quickly [96, 98]. Immortalized BMECs, while convenient,
generally exhibit poor barrier function, making them un-
suitable for applications requiring physiological TEER or
permeability [96, 99]. Primary or immortalized sources of

Fig. 2 TEER and permeability measurements for assessing barrier function. (a) The transwell model, with an EC monolayer on the apical side of the
membrane, and supporting cell types in the ‘contact’ and ‘non-contact’ positions on the underside of the membrane and in the basolateral chamber.
TEER is measured between electrodes located in each compartment. Permeability is measured by introducing a solute of interest into the apical
chamber and measuring the time-dependent concentration in the basolateral chamber. (b) A microfluidic version of the transwell model.
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other NVU cell types (such as C8-D1A astrocytes), may
suffer similar limitations, and are usually of animal origin.
An alternative to primary and immortalized BMECs is

the use of cells derived from hiPSCs. hiPSCs have the
potential to provide an unlimited, self-renewable, and
scalable source of human BMECs for BBB research
[100]. Additionally, astrocytes and pericytes can be gen-
erated from the same source of hiPSCs, enabling a fully
human, syngeneic BBB model [23, 24]. Challenges to
adopting hiPSC-based cellular sources include identify-
ing and recreating conditions suitable for guiding each
differentiation and demonstrating comparable function-
ality to cells in vivo.
hiPSC-derived BMECs have been obtained through a

co-differentiation of ECs/neural cells, followed by a puri-
fication based on selective adhesion [20, 101–103].
hiPSC-derived BMECs possess localized AJs and TJs, ex-
press BBB nutrient transporters and demonstrate polar-
ized efflux of rhodamine 123 [20, 101–103]. hiPSC-
derived BMECs also exhibit physiological values of TEER
[20, 101–103]. In some cases, especially with low intrin-
sic TEER values, co-culture with pericytes and neural
progenitor cell-derived astrocytes and neurons may in-
crease TEER [23].
hiPSC-derived pericytes have been isolated from spon-

taneously differentiating embryoid bodies (EBs) [104] or
more recently through directed monolayer differenti-
ation [21, 105]. These strategies seek to replicate meso-
derm induction and vascular specification and result in
bicellular populations of ECs and pericytes. Pericytes are
isolated either by expansion in conditions that favor
pericyte growth [21], or depleted of ECs based on nega-
tive selection for CD31 or VE-cad through fluorescence-
activated or magnetic-activated cell sorting (FACS or
MACS) [104–106]. hiPSC-derived pericytes are charac-
terized by their expression of pericyte markers, which
often include PDGFR, NG2, calponin, aSMA, CD73,
CD105, CD44, and CD146 [7, 21, 107]. As a result of the
limited understanding of the morphological and func-
tional differences between pericytes in different tissues,
it is difficult to establish whether pericyte differentiations
can be considered brain-specific.
hiPSC-derived astrocytes have been generated by mul-

tiple groups through various embryoid body or mono-
layer techniques (reviewed in [108]). Typically, hiPSC-
derived astrocytes are generated through an intermediate
stage of neural progenitor cells (NPCs), which possess
multilinage potential to form astrocytes, neurons, and
oligodendrocytes. NPCs are generated by culturing
hiPSCs in high concentrations of epidermal growth fac-
tor (EGF) and basic fibroblast growth factor (bFGF)
[109, 110]. Extended culture of NPCs in astrocyte
medium generates astrocytes characterized by the pres-
ence of GFAP and S100β [22–24].

Further elucidation of the pathways involved in BBB
development and cellular response to molecular, chem-
ical, and mechanical cues will allow researchers to de-
velop and refine differentiations to produce cells optimal
for use in human BBB models. Incorporation of multiple
cell types into an in vitro BBB model must take into
consideration conditions which will promote quiescence.
Activated astrocytes secrete inflammatory cytokines, as
well as matrix metalloprotease-9 (MMP-9) and vascular
endothelial growth factor (VEGF), which can decrease
barrier function. Recently, a 3D matrix composed of col-
lagen type I, hyaluronic acid (HA), and growth factor re-
duced matrigel, designed to reflect the composition and
mechanical properties of the brain ECM, was found to
induce star-like morphology and low levels of GFAP ex-
pression typical of quiescent astrocytes [111]. Studies
examining the effect of media and matrix conditions on
each cell’s phenotype type are essential to replicate
healthy BBB function in vitro.

In vitro platforms
Platforms for configuring BBB cells are subject to many
technical design considerations. In the context of recap-
itulating the complete BBB, an ideal platform would sup-
ply physiological levels of shear stress as well as facilitate
the correct spatial organization of NVU components,
allowing them to form realistic cell-cell junctions and
basement membrane. While the transwell assay remains
the most widely used platform, a number of models have
sought to satisfy these other criteria. In vitro platforms
have been classified and compared in Table 2.
Most dynamic models of the BBB extend the two-

dimensional membrane-based approach by incorporat-
ing a 10 μm thick transwell membrane into a microflui-
dic device. Permeability measurements can be made by
adding small molecules to the culture media, and TEER
can be measured through the use of integrated elec-
trodes [112–114]. These devices are designed to be im-
provements over the transwell assay, while remaining
relatively inexpensive and high-throughput, in order to
be suitable for drug permeability studies. In a variation
of the membrane-based microfluidic models, an extra-
cellular matrix can be incorporated into the channel
underneath the porous membrane, allowing co-culture
of other cell types in a 3D matrix [115] (Fig. 2b). Al-
though still featuring planar geometry and a porous
membrane interfering with complete cell-cell contact,
these models are closer to the microenvironment of the
BBB, enabling more advanced in vitro studies of drug
permeability which could also examine the effect on
neurons. However, recapitulating the phenotype of brain
pericytes and quiescent astrocytes remains a significant
challenge.
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Templated perfusable models can be created using a
variety of methods, including the gelation of ECM around
a removable template rod [116, 117], lithography [118],
3D printing [119], and viscous fingering [120]. These sys-
tems are capable of replicating microvessel geometry and
allow dynamic reorganization of co-cultured cells. Al-
though the fabrication of these models is time-consuming,
their sophistication allows researchers to examine com-
plex interactions such as neuroinflammation [120], or
visualization of drug transport across the endothelium in
real time [116, 117]. Permeability has been successfully
measured by quantitative fluorescent detection of molecu-
lar transport across the endothelium [116, 117, 121].
A difficult challenge facing in vitro BBB platforms is the

fabrication of perfusable, capillary-dimension vascular net-
works. The majority of the surface area and thus transport
within the BBB occurs in capillaries, which exhibit an
average diameter of around 8 μm in humans [3]. Yet the
smallest microvessels fabricated through any of these
techniques is approximately 20–50 μm, due to the difficul-
ties in achieving sufficiently high EC seed density in small
channels without clogging [118, 122]. The prevalent ap-
proaches to overcome this issue are to stimulate capillary
angiogenesis from larger microvessels, or to stimulate vas-
culogenesis of ECs embedded in a matrix. Non-brain ca-
pillary formation has recently been observed between
adjacent microvessels in vitro. These capillaries are perfu-
sable to fluorescent beads and maintain barrier function
when perfused with fluorescent dextran [121].
A next step for in vitro BBB models is to develop per-

fusable brain-specific capillaries using BMECs within a
matrix surrounded by physiological connections with
other cells of the NVU. Tissue engineering at this scale
will allow for unprecedented mimicry of BBB behavior
in a controlled environment.

Conclusions
Here, we have reviewed the components of the NVU
and discussed approaches to model the BBB. In vitro

BBB models can provide valuable information by serving
as a high-throughput complement to animal models.
Current models vary greatly with regard to cost, technical
demands, recapitulated BBB aspects, and intended appli-
cations. However, there is a critical need to engineer more
representative human BBB models capable of recapitulat-
ing BBB function and dysfunction. This will require inte-
gration of recent advances in stem cell technology with
advances in microvessel microfabrication. The develop-
ment of models that more closely resemble the human
BBB will be important in gaining new insight into the
structure and function of the BBB and its role in develop-
ment and disease.
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Table 2 Platforms for configuring cells to replicate the BBB

Platforms for BBB
modeling

Advantages Disadvantages References

transwell model • replicates confluent monolayer
• suitable for basic co-culture
• easy measurement of TEER and permeability
• does not require pumps or microfabrication

• lacks shear stress
• lacks cylindrical geometry
• lacks proper heterotypic cell-cell contacts

many compiled in
[95, 96]

membrane-based
microfluidic models

• replicates shear stress
• 2D plane allows for convenient imaging

• lacks cylindrical geometry and ECM [112–114]

matrix-containing
microfluidic models

• replicates shear stress
• replicates a 3D environment for embedded cells
• allows for some dynamic reorganization

• matrix can pose technical challenges,
including contraction

• lacks cylindrical geometry

[115]

templated perfusable
models

• replicates shear stress
• replicates a 3D environment for embedded cells
replicates cylindrical geometry

• difficult to fabricate < 20–
50 μm diameter vessels

• cannot measure TEER

[116, 120, 121]
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