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Abstract

Background: The study of simplified, ad-hoc constructed model systems can help to elucidate if quantitatively
characterized biological parts can be effectively re-used in composite circuits to yield predictable functions.
Synthetic systems designed from the bottom-up can enable the building of complex interconnected devices via
rational approach, supported by mathematical modelling. However, such process is affected by different, usually
non-modelled, unpredictability sources, like cell burden.

Methods: Here, we analyzed a set of synthetic transcriptional cascades in Escherichia coli. We aimed to test the
predictive power of a simple Hill function activation/repression model (no-burden model, NBM) and of a recently
proposed model, including Hill functions and the modulation of proteins expression by cell load (burden model,
BM). To test the bottom-up approach, the circuit collection was divided into training and test sets, used to learn
individual component functions and test the predicted output of interconnected circuits, respectively.

Results: Among the constructed configurations, two test set circuits showed unexpected logic behaviour. Both
NBM and BM were able to predict the quantitative output of interconnected devices with expected behaviour, but
only the BM was also able to predict the output of one circuit with unexpected behaviour. Moreover, considering
training and test set data together, the BM captures circuits output with higher accuracy than the NBM, which is
unable to capture the experimental output exhibited by some of the circuits even qualitatively. Finally, resource
usage parameters, estimated via BM, guided the successful construction of new corrected variants of the two
circuits showing unexpected behaviour.

Conclusions: Superior descriptive and predictive capabilities were achieved considering resource limitation
modelling, but further efforts are needed to improve the accuracy of models for biological engineering.
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Background
Modularity of parts is one of the key features of the engin-
eering world that enables to achieve predictable outcomes
upon interconnection of quantitatively characterized com-
ponents [1]. Even when modularity of components does
not persist, i.e., they do not maintain their intrinsic prop-
erties when connected with other modules, engineers can

still rely on the knowledge of parts interactions to yield
predictable systems [1–3]. The predictability of the de-
signed circuits is also a central issue in synthetic biology,
since only in a predictable framework biological systems
can be constructed from the bottom-up. Mathematical
models can support the design process, enabling the ra-
tional engineering of complex systems and avoiding trial
and error approaches [3–5]. Although standardized
approaches for the characterization of parts have been
recently proposed, the intrinsic complexity of biological
components currently limits the predictability of parts
function when they are re-used in different contexts [6, 7].
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The major unpredictability sources for biological compo-
nents are context-dependent and cell-to-cell variability,
cross-talk, evolutionary stability, retroactivity and cell bur-
den [2, 6]. Efforts towards the reproducible characterization
of parts function include standardized measurement ap-
proaches for transcriptional activity [8] and biophysical
models for the quantification of ribosome binding sites
(RBSs) strength [9, 10] or transcriptional terminators
efficiency [11, 12].
The study of simplified model systems can help to elu-

cidate the feasibility boundaries of the bottom-up design
approach in biological engineering. Within this frame-
work, different studies used mathematical models to
study the superposition of the effects of multiple inde-
pendent gene expression cassettes [13], context-
dependent variability of individual or interconnected de-
vices [14–16], retroactivity effects due to the intercon-
nection of biological modules which share common
resources [17] and prediction of quantitative behaviour
of logic functions [18–20] or feed-forward circuits [21].
High-throughput studies have also been carried out to
evaluate the variation of parts activity in a large number
of diverse expression systems, showing the variations
expected for promoters, RBSs and genes with differ-
ent codon composition [22, 23]. Efforts towards the
improvement of biological components modularity
have recently been carried out by proposing insulated
promoters [24, 25], a bicistronic design for gene ex-
pression cassettes that makes RBS efficiency more
predictable [26], a device for timescale separation to
mitigate retroactivity [27] and ribozyme-based insula-
tors at 5′-UTR [28]. Recent works have also proposed
methods to guide biological engineers in parts selec-
tion, via statistical analyses to evaluate promoter and
RBS collections [29], and a computer-aided design
tool for the choice of logic devices to construct reli-
able functions [30]. In the latter study, devices are se-
lected via model-based approach from the knowledge
of their transfer function, also considering the
minimization of cell burden and failure rate caused
by the multiple use of the same part in a circuit.
One of the main factors leading to unpredictable

behaviour of synthetic circuits is cell burden [31]. The
unnatural load caused by heterologously expressed
genes can lead to transcriptional and translational re-
sources depletion, exerting important global effects on
the functioning of the designed circuit [31, 32]. Syn-
thetic circuit designs aimed to reduce the metabolic
load for the cell have been reported [33–36], in which
systems with superior protein yield or functions were
obtained. Experimental and in silico methods have also
been recently proposed to analyze cell burden in
synthetic circuits [35, 37–39]. The use of a constitutive
expression cassette for a reporter gene, integrated in

the bacterial chromosome, has been adopted as a real-
time and in vivo burden monitor, to indirectly quantify
the cellular resources limitation via microplate assay
[35]. This methodology was demonstrated to be more
sensitive than growth rate measurement for burden
quantification. Other works have used the same
approach, with the constitutive cassette assembled in
plasmid, to study cell burden via modelling frameworks
based on electronic engineering [39] and microeco-
nomics [38]. Different mathematical models have been
proposed for the analysis of protein expression in a
limited resources context [37, 40, 41]. Such recently
proposed models have been useful to identify the ex-
pression systems behaviours occurring when resources
are limiting and cannot be trivially explained via simple
Hill function-based activation/repression models [42].
However, such burden models still have shortcomings,
e.g., they are unable to explain the possible separation
of cellular resource pools among chromosome and
plasmids (as suggested by Gyorgy et al. [38]) and the
relationship between cell growth rate and resource
pools is still lacking in such models, although it has
been included in one recent study on dynamics of
protein expression [43]. While most of the literature
studies analyzed cell burden in non-interacting gene
expression systems, a recent in silico study indicated
that burden can largely affect the quantitative func-
tion of interconnected circuits, in which non-trivial
activation and repression functions may emerge [37].
Such previously unexpected behaviour was confirmed
by recent in vivo experiments involving a simple gene
regulatory network, tested with two diverse regulatory
gene RBSs and circuit copy numbers [44]. In the
same work, an interaction graph-based theoretical
framework was proposed to describe the effective
interactions occurring among network modules, and
eventually guide the design of circuits with different
topologies [44].
The works mentioned above demonstrate the need of

further steps towards the testing of a rigorous bottom-
up approach in the design of interconnected synthetic
circuits and they also highlight that cell burden is an im-
portant feature to be modelled in order to describe
otherwise unpredictable outputs.
In this study, we analyzed synthetic transcriptional

cascades in Escherichia coli, obtained upon intercon-
nection of different inducible and repressible devices.
To elucidate the reliability of currently available
mathematical models applied to this circuit collection,
we aim to test the predictive power of a widely used
Hill function model and of one of the recently
proposed models that considers cell burden due to
resource limitation. Specifically, the latter considers
Hill functions to describe specific interactions among
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circuit elements together with cell burden that modu-
lates protein expression. These models are described
in the Methods sections and will be referred to as
no-burden model (NBM) and burden model (BM), re-
spectively. The study presented in this work eluci-
dates the feasibility boundaries of a bottom-up
approach and the importance of taking into account
cell burden in quantitative predictions.

Results and discussion
Circuits description
The circuits analyzed in this study are described in Fig. 1.
Their design is based on the widely used lux, tet and lac
systems elements, and the RFP and GFP reporter genes
(see Additional file 1: Table S1 for a description of all
the basic parts used). The circuits topology implements
transcriptional cascades [25, 45] composed by an HSL-

Fig. 1 Collection of circuits analyzed in this study. All of them are available with an RFP expression system downstream of the output promoter
(indicated in the text with the r suffix), and also with a GFP expression cassette driven by a constitutive promoter downstream (indicated in the
text with the rg suffix, meaning that both RFP and GFP can be measured to quantify circuit output and cell burden, respectively). Curved green
arrows represent promoters; straight violet arrows indicate coding sequences; red hexagons represent transcriptional terminators; ovals represent
RBSs (BBa_B0030 yellow; BBa_B0034 orange; BBa_B0031 blue); circle represents HSL. Activation and repression are indicated as thin arrows. Block
colour is consistent among the circuits
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inducible or -repressible input block upstream of NOT
gate blocks (none, one or two) connected in series.
Finally, an RFP expression device is assembled down-
stream of the cascade to serve as detectable circuit out-
put. All of them have been assembled in the low-copy
pSB4C5 vector [46]. Input blocks include a constitutively
expressed luxR gene with a strong RBS (BBa_B0030 or
BBa_B0034) under the control of the PR, PLtetO1 or
PLlacO1 promoter [47], and the wild-type inducible Plux
promoter [48] or the strongest member of a synthetic
repressible promoter library [49], herein called PluxRep,
downstream. The NOT gates include the tetR or lacI re-
pressor gene, with a weak RBS (BBa_B0031), and their
cognate repressible promoter PLtetO1 or PLlacO1, respect-
ively, downstream [50]. The tetR and lacI genes both
have an LVA fast-degradation tag for the translated pro-
tein [51].
One- to three-block cascades have been studied by

using different combinations of these devices.
A collection of the same circuits has also been con-

structed with a reporter expression cassette downstream,
composed by a GFP expression system driven by a con-
stitutive promoter (BBa_J23100). This additional gene
expression cassette will be referred to as Monitor cas-
sette, and it will be adopted to quantify cell burden, as
previously carried out [35, 38, 39].
The described circuits were divided into training and

test sets (see Fig. 1). In particular, the X1, X2, X3 and
Xrep configurations have been used as specific measure-
ment system constructs for the characterization of input
blocks, whereas X2T and X3L have been used to
characterize individual NOT gates. The ones to
characterize input blocks include the input device with
RFP downstream. The ones to characterize NOT gates
include a pre-characterized input device upstream, in
order to tune the expression of tetR and lacI over a
range of levels, and RFP downstream to measure the
NOT gate block output. In the context of a bottom-up
approach, the characterization of the circuits above was
used to predict the behaviour of the test set circuits,
which are composed by different combinations of the
characterized blocks.
The used input devices provide homogeneous tran-

scriptional output with no bimodal distribution of gene
expression [19, 49, 52]. For this reason, the network
topology used for the circuits in this work provides
unimodal outputs at all the cascade levels.

Data overview
Cascade output level at steady-state was measured as a
function of HSL for all the circuits via RFP analysis (see
Additional file 1: Figure S1). Considering circuits without
Monitor, their RFP output span a wide range of values
(>640 fold), with all the circuits showing a relevant output

variation as a function of HSL concentration, from 3 fold
(XrepTLr) to 141 fold (X1r). The growth rate of these re-
combinant strains span a 2.5 fold range (see Additional file
1: Figure S2). The quantitative behaviour of individual
devices was consistent with previously published
characterization data (see Additional file 1: Supplementary
analysis of circuits data) [15, 49, 52–55].
According to the inducible or repressible behaviour of

the constructed circuits that can be inferred from the in-
dividual blocks, all the 1- and 2-block circuits showed
the expected logic behaviour. However, only two of the
four 3-block circuits (X1LTr and XrepLTr) showed the
expected logic output trend: the X1TLr and XrepTLr cir-
cuits, in which the output should be an increasing and
decreasing function of HSL, respectively, showed a clear
decreasing output (X1TLr), and an increasing and then
decreasing (XrepTLr) output. Cell resource limitation
may give rise to such qualitatively unpredictable behav-
iour, in which the logic activation and repression rules
were affected by hidden interactions caused by cell bur-
den [37]. For this reason, analysis of circuits in presence
of a burden measurement system was carried out.
Considering circuits with Monitor cassette, GFP was

analyzed (see Additional file 1: Figure S3), in addition to
RFP and growth rate (see Additional file 1: Figures S1-
S2), and used to indirectly measure cell burden. The
RFP output and growth rate are highly similar to the
ones of the circuits without Monitor, suggesting that the
Monitor itself does not provide relevant burden to the
cell (correlation value of 0.99 and 0.83, respectively, see
Additional file 1: Figure S4).
In presence of a monitor cassette, a strong correlation

between growth rate and GFP was previously observed,
caused by growth rate decrease in presence of cell bur-
den [35]. By contrast, here a statistically significant but
very low correlation (0.27) was observed (see Additional
file 1: Figure S5). Considering individual circuits, only
three of them (X2Trg, X1Trg and X1TLrg) showed a sta-
tistically significant growth rate-GFP correlation (see
Additional file 1: Table S2 and Figure S6), with the 0.41,
0.72 and 0.84 values, respectively. These constructs have
in common a highly expressed TetR repressor, while in
the other circuits its transcription is driven by weaker
promoters. Consistently, these three circuits are also
characterized by the lowest GFP levels among the tested
circuits (see Additional file 1: Figure S3). Such data sug-
gest that a correlation between growth rate and GFP can
be detected only in the circuits causing the highest cell
burden, while in other recombinant strains no significant
growth rate-GFP correlation could be seen, even though
GFP and growth rate showed large variations and GFP
exhibits a clear HSL-dependent trend.
In previous studies of circuits including single non-

interconnected expression cassettes, RFP and GFP also
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showed strong correlation because Monitor levels de-
crease when the expression of a second protein is trig-
gered, due to resource allocation [38, 39]. The same
negative strong correlation can be seen here for the four
input devices (see Additional file 1: Table S2 and Figure
S7). This trend cannot be observed for the other circuits,
which include the regulated expression of different pro-
teins, whose expression, together with the one of RFP,
may provide a burden for the cell and give rise to com-
plex RFP-GFP relationships.
The illustrated inter-relationships among RFP, GFP

and growth rate confirm the usefulness of a burden
monitor to measure cellular capacity instead of typically
used growth rate measures. In fact, the output of a
monitor cassette can not only provide an early cellu-
lar burden signal that precedes a growth rate decrease
in dynamic experiments, as previously described [35],
but also a more sensitive measure of cellular capacity,
demonstrated by the clear RFP-GFP negative trend
for the input devices (see Additional file 1: Figure
S7), not reflected by growth rate changes (see Add-
itional file 1: Figures S1-S3).

Circuit predictability with the no-burden model
The data from the training set circuits were fitted with
the NBM (see Methods section). A prediction perform-
ance summary is reported from a Boolean logic and a
quantitative point of view (see Fig. 2b and e, respect-
ively). The logic behaviour of all the circuits is accurately
captured for all the training set circuits (Fig. 2a) and for
all except two test set circuits: X1TLr and XrepTLr
showed an unexpectedly non-increasing and non-
decreasing HSL-dependent output, anticipated above,
that was not predicted by the model (see Fig. 2b). The
overall quantitative predictions on test set circuits
showed a 0.88 correlation coefficient (see Fig. 2e).
The NBM fits the training set data accurately (see

Additional file 1: Figure S8), and the estimated param-
eter values showed a relatively contained uncertainty
(see Table 1).
Test set data could be accurately predicted by the

identified model in the X1Tr, X1Lr, XrepTr and X1LTr
constructs (see Fig. 3). The XrepLr and XrepLTr showed
qualitatively correct predictions, but they underestimated
the experimental data at maximum output level by up to
2 fold (see Figs. 2 and 3). On the other hand, as expected,
the two remaining circuits (X1TLr and XrepTLr) did not
show a correct prediction even qualitatively: a simple
Hill function-based model is not able to describe their
observed HSL-dependent RFP output (see Fig. 3).
To consider the effect of parameter uncertainty on the

output prediction, uncertainty was propagated via Monte
Carlo approach during the fitting and simulation pro-
cedure (see Methods section). In the training set, the

resulting confidence bands of circuit outputs were very
narrow, demonstrating a low uncertainty in model out-
put, given the distribution of the estimated parameters
(see Additional file 1: Figure S8). In the test set, the un-
certainty of parameter values does not considerably
affect many of the circuits: only XrepTr and XrepLTr
show relevant confidence bands around the central ten-
dency value (see Fig. 3). Steep and sensitive genetic
switches, i.e., biological devices in which the transfer
function shows a steep response and starts increasing
(or decreasing) for very low values of its input, have
been proved to promote high-entity noise propagation
throughout cascades of interconnected devices [56, 57].
As a consequence, in the latter situation the output
curve is sensitive to small variations of parameters and
activity of the input block. In the analyzed circuits, the
TetR-based block is a highly sensitive switch, since even
a small activity of the upstream block can result in an
output value that is significantly lower than its max-
imum. This is demonstrated by the PLtetO1 output that,
in presence of an upstream block in the off-state, is
considerably lower than in absence of it (see Additional
file 1: Figure S9). Conversely, the LacI-based block ex-
hibits a similar output value in presence or absence of
an upstream device in the off-state (see Additional file 1:
Figure S9). The described situation may explain the
large output uncertainty of XrepTr and XrepLTr for high
RFP levels (see Fig. 3). To confirm this effect on vari-
ability, univariate sensitivity analysis was carried out on
the δ parameters of all the used devices, considering
plausible variability range values for such parameters
(see Methods section). Results showed that a relatively
small variation of the basic activity of promoters was
sufficient to cause high variability in the output curves
in all the devices containing PLtetO1 as output promoter
(X1Tr, X2Tr, XrepTr, X1LTr and XrepLTr, see Additional
file 1: Figure S10).
The results described above suggest that the ro-

bustness of the quantitative behaviour of the ana-
lyzed circuits can be low in some cases, due to
relevant output variations in response to small varia-
tions of the parameters. Univariate sensitivity ana-
lysis was also carried out on the other three
parameters of the Hill equation describing the de-
vices transfer functions, α, K and η, to understand
their effect on circuit outputs. The results, reported
in Additional file 1: Figure S11-S13, showed that a
variation of K and η could explain the experimental
output of XrepLTr within confidence bands, but not
the one of XrepLr, while the variation of α is able to
capture the output of both XrepLTr and XrepLr. On
the other hand, as expected, the parameter variations
applied during sensitivity analysis could not describe
the experimental output of X1TLr and XrepTLr, even
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by allowing the variation of all the four Hill function
parameters (see Methods section and Fig. 3).
Evolutionary instability issues, such as mutations oc-

curring in the genes or regulatory parts of the circuits,
may cause alterations in their output [58]. To evaluate if
the output trend of X1TLr and XrepTLr was due to such

alterations, phenotypic and genetic stability was assayed
via specific experiments (see Additional file 1: Figure
S14). The on- and off-state output of both circuits were
found to be reversible, i.e., cultures could reproducibly
change RFP output level from low to high upon in-
duction or de-induction, depending on the circuit

a

b

c

d

e f

Fig. 2 Overall prediction performance by the two models analyzed in this work. a-d Logic behaviour of the circuits in terms of RFP output level
in vivo (yellow bars) and in silico (cyan bars) in absence of HSL and at the maximum HSL concentration tested. Results are shown for training set
(a-b) and test set circuits (c-d), considering NBM (a, c) and BM (b, d). Red squares surrounding the sub-panels indicate a circuit configuration with
unexpected in vivo behaviour. Red edges in the in silico-predicted output bars indicate that the model is not able to predict the observed logic
behaviour of the circuit. Yellow bars represent the average output value and error bars represent the 95% confidence intervals of the mean. Cyan bars
represent the median predicted value and error bars represent the 95% confidence intervals calculated via Monte Carlo simulations. e-f Measured
output of the circuits at all the HSL concentrations tested in this work plotted against the values predicted by the NBM (e) and BM (f). Red and blue
points represent RFP and GFP output, and are expressed as AUR cell

−1 min−1 and AUG cell
−1 min−1, respectively. Asterisks correspond to the data of

the two circuits showing unexpected in vivo behaviour, while circles correspond to the data of all the other test set circuits. The solid line is the
bisector line. Each point represents the average value of the in vivo measured condition, versus the median value of the corresponding
model prediction
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(Additional file 1: Figure S14). Only X1TLr showed sta-
bility mutants occurring at high HSL concentrations
(10 μM), but not at intermediate ones, although the RFP
output decreases also in presence of 10 nM of HSL
(Additional file 1: Figure S14). As anticipated above (and
confirmed later in this work), TetR expression represents
a burden for the cell, compared to the other proteins in
the circuit, and this may explain the observed, yet low,
instability occurring at high TetR synthesis levels. The
XrepTLr circuit, on the other hand, did not show mu-
tants. The output reversibility and the reduced presence
of stability mutants only in one circuit and condition

suggest that the unexpected RFP output is not due to
evolutionary instability. Another issue might be enzym-
atic queuing, in which protein degradation complexes
become a limiting resource and causes a slower degrad-
ation of all the proteins including the same specific deg-
radation tag [59]. Although the X1TLr and XrepTLr
circuits both include two proteins (TetR and LacI) with
the same fast-degradation tag, simple in silico simula-
tions showed that queuing effect could not explain the
observed RFP output (see Additional file 1: Figure S15).
In summary, the NBM is able to successfully fit the ex-

perimental data from the training set and, by applying

Table 1 Parameters description and estimated values

Parameter Units Estimated value
(NBM, training set)

Estimated value
(BM, training set)

Estimated value
(BM, via simultaneous
fitting on all circuits)

αX1 AUR cell
−1 min−1 14.63 (3%) 36.17 (7%) 24.33 (4%)

KX1 nM 4.16 (9%) 5.39 (9%) 6.71 (6%)

ηX1 -* 1.42 (3%) 1.51 (2%) 1.19 (2%)

δX1 AUR cell
−1 min−1 0.14 (3%) 0.16 (3%) 0.2 (2%)

αX2 AUR cell
−1 min−1 9.06 (1%) 26.76 (3%) 20.36 (3%)

KX2 nM 15.06 (7%) 17.26 (6%) 31.39 (7%)

ηX2 – 1.24 (3%) 1.25 (3%) 0.97 (2%)

δX2 AUR cell
−1 min−1 0.14 (2%) 0.26 (5%) 0.18 (5%)

αX3 AUR cell
−1 min−1 15.81 (3%) 36.9 (5%) 35.67 (5%)

KX3 nM 4.37 (16%) 7.64 (17%) 8.9 (14%)

ηX3 – 1.45 (6%) 1.41 (6%) 1.34 (6%)

δX3 AUR cell
−1 min−1 0.16 (5%) 0.18 (3%) 0.19 (2%)

αXrep AUR cell
−1 min−1 2.85 (1%) 4.6 (4%) 8.22 (2%)

KXrep nM 6.67 (12%) 5.26 (11%) 1.86 (5%)

ηXrep – 1.32 (12%) 1.21 (9%) 0.86 (2%)

δXrep AUR cell
−1 min−1 0.13 (17%) 0.22 (14%) 0.09 (15%)

αT AUR cell
−1 min−1 3.1 (1%) 3.45 (3%) 4.56 (2%)

KT AUR cell
−1 6.47 (5%) 15.6 (7%) 6.92 (2%)

ηT – 1.59 (7%) 8.28 (31%) 2.57 (2%)

δT AUR cell
−1 min−1 0.03 (19%) 0.22 (3%) 0.21 (2%)

αL AUR cell
−1 min−1 0.63 (6%) 0.56 (9%) 0.76 (2%)

KL AUR cell
−1 56.39 (17%) 52.13 (22%) 34.92 (2%)

ηL – 1.91 (16%) 1.93 (42%) 1.93 (3%)

δL AUR cell
−1 min−1 0.11 (26%) 0.22 (19%) 0.22 (3%)

ΣXλ – NA* 0.2 (8%) 0.36 (2%)

ΣXlac – NA 1 (6%) 0.56 (2%)

ΣXtet – NA 0.07 (23%) 0.12 (11%)

JRFP AUR
−1 cell min NA 0.04 (3%) 0.04 (3%)

Jtet AUR
−1 cell min NA 0.07 (15%) 0.31 (2%)

Jlac AUR
−1 cell min NA 0.01 (13%) 0.01 (7%)

Sm AUG cell−1 min−1 NA 1.75 (2%) 1.75 (2%)

*NA: not applicable; −: dimensionless
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small variations to some of the model parameters, to
quantitatively predict the output of all the set circuits
with expected logic behaviour. On the other hand, the
output of the two test set circuits that show unexpected
behaviour was not captured by the NBM in any of the in
silico experiments.
The experimental data of RFP output coming from the

circuit collection with the Monitor cassette was also
fitted with the NBM and analogous conclusions can be
drawn (see Additional file 1: Figure S16).

Circuit predictability with the burden model
Among the available models describing circuits output
considering cell burden [37, 40, 41], we selected the one
proposed by Qian et al. [37] (see Methods section) that
was also adopted in other works [38, 39]. This model
includes a low number of burden-related parameters,

i.e., one for each gene in the circuit, while the other
models, although successful in the in silico study of dif-
ferent situations [35, 40, 41], required the estimation or
assumption of a larger number of parameters. The
model by Qian et al. can be integrated into a simple Hill
function model by introducing a protein synthesis-
dependent factor, which has a global negative effect on
the protein expression of all the circuit. The weight of
each protein synthesis term quantifies the contribution
of each circuit module to the global cell load, and has
been previously used as a mechanistic model-derived
lumped parameter measuring resource usage [37].
Analogously to what was performed for the NBM, the

data from the training set circuits were fitted with the
BM, by considering both RFP and GFP, representing the
circuit output and the burden measures, respectively,
and the output of test set circuits was finally predicted
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Fig. 3 NBM prediction of the measured HSL-dependent output in all the test set circuits without Monitor cassette. Circles represent the average
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(see Fig. 2D and F for an overview of the logic and quan-
titative prediction performance).
Among the training (see Fig. 2b) and test set circuits

(see Fig. 2D), only XrepTLr shows a non-correct logic be-
haviour prediction, while all the other circuit configura-
tions could be captured. In particular, it is worth noting
that the BM is able to predict the output of X1TLr,
which could not be predicted by the NBM.
The training set data were fitted by the BM with rea-

sonable accuracy (see Additional file 1: Figures S17-S18).
In particular, the model showed excellent quantitative
accordance with RFP experimental data (see Additional
file 1: Figure S17), as it was observed above for the
NBM; GFP data were all well fitted by the BM, except
Xreprg and X3Lrg, for which the model showed a
slightly lower descriptive capability to capture the mea-
sured data than for the other circuits (see Additional
file 1: Figure S18).
The estimated parameter values showed significant de-

viations from the ones obtained via NBM (see Table 1).
The most remarkable differences can be observed for
the α parameter values of almost all the devices. These
values are, in general, higher when estimated via the
BM. This trend was expected, since in a limited cell re-
sources framework the devices are globally burdened,
and the estimated α values are linked to the maximum
achievable activity, which may not be reached in any of
the tested conditions [37]. For instance, the X1rg device
shows a 2.5 fold difference in the α values between
NBM and BM, meaning that the observed activity at full
induction reached by the Plux promoter in this device is
much lower than maximum attainable one, which was
2.5 fold higher, due to the high RFP expression rate in
this induction condition. A lower fold change is ob-
served for devices characterized by lower activity in
the on-state (e.g., Xreprg), since the α values estimated
via the NBM are close to the maximum attainable
ones, estimated by the BM. In addition to the Hill-
related parameters, the BM includes resource usage
parameters for each gene in the circuit [37]. The esti-
mated values of the LuxR contribution to cell burden
(ΣXλ, ΣXlac and ΣXtet, corresponding to the expression
systems driven by PR, PLlacO1 and PLtetO1, respectively)
showed that LuxR expression alone in the input de-
vices causes cell burden and decreases circuit output
by up to 50%, with the cassette driven by PLlacO1 giving
the highest burden and the one driven by PLtetO1 giving
the lowest one (see Table 1). This effect can be ob-
served in the GFP output curves of the four input
blocks in absence of HSL (see Additional file 1: Figure
S18). In these four circuits in this condition, RFP ex-
pression is negligible and the only protein having a sig-
nificant contribution to cell burden is LuxR; as a
result, GFP output level is inversely correlated with the

corresponding Σ value. This result was unexpected,
since PLlacO1 has a lower activity than PLtetO1 in the
used chassis, and a lower burden value for it was ex-
pected (given identical RBSs upstream of luxR). The es-
timated resource usage parameter values of RFP, TetR
and LacI (JRFP, Jtet and Jlac, respectively) enable to con-
clude that, with the used RBSs, TetR causes the highest
cell load, while LacI the lowest one. Such values can be
useful to evaluate the working boundaries in the
bottom-up design of reduced-burden circuits, as dem-
onstrated previously via different approaches [35].
Quantitative prediction results on the RFP output

of test set circuits showed that the overall perform-
ance of the BM (correlation coefficient of 0.87, see
Fig. 2F) is analogous to the one of the NBM. Consid-
ering individual circuits, X1Lrg, XrepLTrg and X1TLrg
showed a good prediction with data consistent with
the confidence bands of the model (see Fig. 4). Im-
portantly, X1TLrg was one of the two circuits whose
output could not be correctly predicted by the NBM;
the other circuit (XrepTLrg), however, still behaved
unpredictably. A slight over- (X1Trg and XrepTrg) or
under-estimation (XrepLrg) of the experimental data
maximum output level was observed for three cir-
cuits, with an error up to 1.4 fold. The predicted out-
put of X1LTrg showed a slightly anticipated switch
point and an over-elongation at intermediate HSL
concentrations that is not observed in experimental
data. Considering the Monitor output of the same cir-
cuits (see Fig. 5), GFP showed an overall over-
estimation of the experimental data, with a lower pre-
diction performance than RFP (0.71 correlation coeffi-
cient, see Fig. 2F), suggesting that additional
modelling work is needed to improve the predictive
capability of burden-related models.
As it was carried out for the NBM, sensitivity analysis

was performed. Results are shown for a multivariate sen-
sitivity analysis (see Fig. 4-5). As expected, confidence
bands are higher than for the NBM, since the BM has
more parameters that can vary in a multivariate fashion.
Results showed that all the RFP data can be explained
by confidence bands, except XrepTLrg, leading to
analogous conclusions drawn for the NBM: parameter
variations of plausible entity can capture all the ex-
perimental data except for circuits showing qualita-
tively inconsistent predictions.
In summary, the BM does not improve the quantita-

tive prediction performances of the analyzed circuits
with expected behaviour, over the NBM. However, it
correctly predicted the output of one of the two circuits
with unexpected output behaviour, not predicted by the
NBM, and, in addition, enabled the estimation of
burden-related parameters that support the rational de-
sign of synthetic circuits.
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Model fitting using all the available experimental data
The BM was also identified by using all the available
data of the training and test sets, in order to demon-
strate the descriptive capability of the model to simul-
taneously fit all configurations, considering both RFP
and GFP data as before (Additional file 1: Figures S19-
S20). The NBM was used to fit the RFP experimental
data as a term of comparison, but its descriptive ca-
pability was significantly worse than the one of the BM
(Additional file 1: Figure S19). Model comparison dem-
onstrated a significantly higher fitting performance for
the BM (LR test, p-value <0.05). The parameter esti-
mates resulting from the BM fitting are reported in
Table 1. Their values confirm the conclusions about bur-
den contribution levels for all the circuit proteins, since
the Σ and J parameters have the same ranking as before,

despite a large variation was observed for some of them
(e.g., Jtet which was >4 fold higher than before).
Fitting results in Additional file 1: Figures S19-S20

show that the output of some configurations are over-
or under-estimated up to 1.5 and 2.1 fold for RFP
and GFP, respectively, although the outputs of all cir-
cuits is qualitatively captured. Parts activity variation
upon interconnection, an open problem in synthetic
circuit design, can explain the observed changes be-
tween individual configurations. Specifically, despite
cell burden modelling can explain some unexpected
phenomena in bottom-up designed circuits, other
context-dependent effects still have to be quantita-
tively elucidated, e.g., promoter transcription variation
caused by diverse flanking DNA sequences in differ-
ent configurations [25].
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Fig. 4 BM prediction of the measured HSL-dependent RFP output in all the test set circuits with Monitor cassette. Circles represent the average
measured value and error bars represent the 95% confidence intervals of the mean. Solid line represents the median predicted output of the
model calculated via Monte Carlo simulations for each HSL concentration tested. Dashed dark red lines are the 95% confidence bands of the
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The obtained results suggest that the modelling of
cell burden significantly improves circuit output de-
scription capability, but the context-dependent behav-
iour of the assembled devices must be taken into
account in future studies to predict new designed
configurations more accurately.

Fixing non-functional cascades via rational design
To further demonstrate the usefulness of BM in the
rational design of circuits, we designed and con-
structed new variants of the two cascades with unex-
pected behaviour to correct their HSL-dependent
logic function. Based on the estimated resource usage
parameters via BM (see Table 1), tetR was identified
as the gene causing the highest load among the three
regulated modules. For this reason, X1TLr and
XrepTLr were mutagenized to decrease the translation
efficiency of tetR, obtaining X1TwLr and XrepTwLr

(Fig. 6a). Analogously, the training set circuit X2Tr
was mutated, obtaining X2Twr, to enable the learning
of the new tet-based NOT gate transfer function (Fig.
6a). The use of a weaker RBS (BBa_B0033 instead of
BBa_B0031) upstream of tetR successfully modified
the individual NOT gate transfer function (Fig. 6b),
resulting in a less sensitive switch, as indicated by the
KT parameter that increased by 10 fold. Cascades
with this modified tet-based NOT gate are expected
to exert a lower cell load than their previous design
when tetR is overexpressed, thereby restoring the cor-
rect functioning of the interconnected gates. Experi-
mental results showed that this RBS change yielded
circuits with expected increasing (X1TwLr) and de-
creasing (XrepTwLr) behaviour as a function of HSL
(Fig. 6c-d). In addition, considering all the HSL con-
centrations tested, the new circuits had about 2 fold
higher growth rate than the previous ones (data not
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shown). The RFP output of the realized circuits was
also accurately predicted by the NBM, using the same
training set as above (see Fig. 1) except X2Twr that
was used instead of X2Tr (Fig. 6c-d). This result
demonstrated that, after the attenuation of the main
burden source, the two circuits with previously unex-
pected behaviour could be not only fixed in terms of
qualitative behaviour, but also their quantitative HSL-
dependent output could be successfully captured via
traditional NBM.

Conclusions
Recently proposed in vivo and in silico methodological
approaches have been adopted to face the long-standing
issue of biological devices predictability for the bottom-
up design of synthetic circuits. Namely, a reporter
expression cassette was used to quantify cell load and a
mathematical model, which explicitly describes global
burden-related effects on protein synthesis levels, was
adopted for predictions. A set of ad-hoc constructed
genetic circuits implementing transcriptional cascades
was used as a testbed by following a rigorous bottom-up
design process, including the learning of individual mod-
ules function (using a training set) and the evaluation of
model predictions on a previously unseen circuit collec-
tion (using a test set).
From a qualitative point of view, considering the indu-

cible/repressible behaviour of the circuits, the used
model systems collection included circuits exhibiting ex-
pected HSL-dependent trend and a small set of circuits
showing apparently unexpected outputs. The circuits
spanned a wide range of RFP levels, corresponding to
circuit output, and also showed diverse growth rates and
GFP levels, indicating a variation of cell burden for

different circuits and HSL inducer concentrations. Such
statistics suggest that the considered collection includes
sufficient variations in the observed variables to test the
model descriptive and predictive capabilities.
A model-free correlation analysis of the measured data

showed a strong negative correlation between GFP and
RFP levels in the 1-block circuits, including only the in-
put module with RFP downstream. This was expected,
since high RFP expressions cause an increase of cell bur-
den [38, 39]. Circuits with more than one block, on the
other hand, did not show such trend, since the entity of
cell load is expected to be not only RFP-dependent, but
also function of the expression of the other circuit-borne
proteins. On the other hand, the previously observed
strong correlation between GFP (expressed via chromo-
somal constitutive cassette) and growth rate [35] was
not observed in our data, which showed a weak correl-
ation. This difference could be due to several factors,
discussed below. By analyzing only the circuits exhibit-
ing the lowest GFP values (corresponding to higher cell
burden), their correlation with growth rate is relevant,
while for the others it is non-significant. Circuits exhibit-
ing a lower cell burden did not show a relevant variation
in growth rate, but a clear HSL-dependent GFP trend
could be observed. These results suggest that a GFP-
growth rate correlation can be only observed if the cir-
cuits are affected by a relevant cell burden, and that the
use of a constitutively expressed reporter protein has a
clear superior performance, in terms of sensitivity, over
the traditional use of growth rate for cell burden moni-
toring. Moreover, in this work we analyzed a different
genetic context (Monitor cassette placed in plasmid in-
stead of chromosome), and used different experimental
protocols (HSL addition and growth to reach the steady-

a b c d

Fig. 6 Analysis via NBM of the measured HSL-dependent output in the re-designed circuit variants, without Monitor cassette. a Circuit description.
All of them are available with an RFP expression system downstream of the output promoter (indicated in the text with the r suffix). Symbols are
described in Figure 1, except white ovals that represent a weak RBS (BBa_B0033), used in these circuits to decrease tetR expression. b Fitting of
the training set circuit X2Twr. Estimated parameters were: αT = 3.03 (4%), KT = 63.14 (17%), ηT = 0.99 (10%), δT = 0.02 (>100%), where symbols have
the same meaning as in Table 1 and CVs are reported in brackets. c-d) Prediction of the test set circuit X1TwLr and XrepTwLr, respectively. In panels
B-D, circles represent the average measured value and error bars represent the 95% confidence intervals of the mean. Solid line represents the
median output of the model calculated via Monte Carlo simulations for each HSL concentration tested. Dashed dark red lines are the 95%
confidence bands of the output distribution. Dashed light red lines are the 95% confidence bands of the output distribution calculated after
multivariate sensitivity analysis
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state of intracellular species) and data analysis methods
(growth rates computed over the whole exponential
growth phase, and GFP computed as fluorescent protein
synthesis rate per cell) than the previous work [35].
Two models were compared in this work: NBM and

BM. While the former uses RFP and growth rate data,
the latter also uses GFP to eventually estimate and ex-
ploit the burden-related resource usage parameters. Both
models were able to accurately fit the data of the train-
ing set and their overall quantitative prediction capabil-
ity was comparable. Nonetheless, the BM allows to
predict the output trend of one non-functional circuit
exhibiting an unexpected output which could not be
predicted by the NBM. Indeed, the behaviour of this
circuit can be successfully explained only by model-
ling cell load.
However, another circuit exhibiting an unexpected

output trend could not be predicted even by the BM.
It is worth noting that the two circuits with unex-

pected logic behaviour analyzed in this study are not ro-
bust logic gates, since the difference predicted by both
the NBM and BM between on-state and off-state is very
low. In fact, despite the transfer functions of all the de-
vices have a wide induction range (see Additional file 1:
Figure S8-S9), their output range may not be entirely
spanned in the interconnected configurations. In these
two circuits, the transcriptional input provided to the
lac-based NOT gate is predicted to exert a detectable
but not tight repression on PLlacO1, thereby covering a
small part of its available output range. Moreover, the
on-state has a transcriptional output activity comparable
with a medium-strength promoter and the off-state has
a high basic activity. While software tools able to guide
the design of robust functions have been proposed [30],
the design of robust gates was beyond the scope of this
work: we limited our study to the analysis and predict-
ability of the qualitative and quantitative output ob-
served from the interconnection of pre-characterized
modules. The previously proposed software system also
considers cell load by identifying the part configurations
in which a relevant impairment of cell growth was ob-
served. The BM used in our study could be a further
support in the rational engineering of genetic circuits,
also from the knowledge of the resource usage of all the
involved proteins (see below).
The NBM and BM were also systematically compared

in terms of descriptive capabilities. To carry out this
task, all the available data were considered and fitted
with the NBM and BM. The BM captures circuits output
with higher accuracy than the NBM, which is unable to
capture the experimental output exhibited by some of
the circuits even qualitatively. An over- or under-
estimation of RFP and GFP outputs, up to 1.5 and 2.1
fold, respectively, were still present; such fold change

values are reasonably contained, and comparable to
other studies focused on predictability [15, 22, 49].
Context-dependent variability might cause such vari-
ation. Previous studies proposed a linear model-based
method to score the quality of part collection members,
relying on the characterization of their activity in differ-
ent genetic constructs [29]. Analogously, because of
context-dependent variability of parts, the BM may be
unable to explain all the variation observed in the ex-
perimental data, and the same devices measured in dif-
ferent context can show diverse activity. In case of
simultaneous fitting, the estimated parameter values rep-
resent the average values that best describe parts behav-
iour considering all the circuits. On the other hand, if a
parameter value is estimated on a single training set cir-
cuit, it represents the specific value of the analyzed cir-
cuit. In the training set circuits used in this study, all the
model parameters have been estimated considering a
single circuit, except the burden-related parameters,
which were the result of a simultaneous fitting con-
sidering all the circuits including the protein causing
resource usage.
The fitting of the training set data by the BM enabled

to estimate resource usage parameters for the proteins
involved in the cascades. With the used RBSs, TetR was
found to cause more cell load than LacI (i.e., the other
repressor used) and RFP. This resource usage ranking
was confirmed through the parameter estimation results
of the simultaneous fitting of all the available data (not
only training set circuits) by the BM. The contribution
of LuxR to cell load was estimated as a non-dimensional
parameter lumping the product of resource usage par-
ameter and maximum LuxR synthesis rate per cell, since,
differently from the other circuit proteins, the latter was
not estimated in this study. For this reason, in the
present work the resource usage of LuxR cannot be dir-
ectly compared with the other considered proteins.
Based on the resource usage estimation via BM, we fi-

nally fixed the two circuits with unexpected behaviour
by decreasing the translation of the gene causing the
main load to the cell. To this aim, a 10 fold decrease in
tetR translation efficiency successfully restored a correct
function for both circuits, and the NBM was able to ac-
curately predict the observed output. The obtained re-
sults demonstrate the usefulness of BM in the
identification of the modules causing excessive cell load
and the successful utilization of resource usage know-
ledge to drive the rational re-design of predictable
circuits.
Based on the cell burden measurements and model-

ling, in both a bottom-up and global fitting fashion, and
on the subsequent study of low-burden variants, we en-
abled to confirm that the unexpected behaviour of the
X1TL and XrepTL configurations was due to tetR
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overexpression, which caused excessive cell load. Despite
tetR affects the two circuits by breaking their logic be-
haviour, it is worth noting that cell burden also affects
other circuits without breaking their function. In par-
ticular, according to GFP measurements and BM predic-
tions, tetR exerts a high load in the X2T and X1T
configurations, even higher than in XrepTL. However,
this affect is not visible, since the high-load condition per-
sists when the circuit output is low, thereby masking any
burden-induced effects on the expected logic function of
these circuits.
Taken together, our results showed that the use of the

BM has advantages over using the NBM, in terms of
predictability of some configurations in bottom-up ap-
proach, descriptive power of circuit and Monitor output,
estimation of load-corrected transfer function parame-
ters and estimation of the resource usage parameters,
which can support the rational design of circuits with
predictable function.
However, several steps still need to be carried out to

improve the predictability of models like the ones used
in this study. For instance, here the growth rate was
fixed in the model for each circuit and HSL concentra-
tion, without any effort to predict it from the specific
circuits used. The knowledge of growth rate could affect
protein dilution, and recombinant strains with different
dilution rates may exhibit diverse quantitative circuit be-
haviours. The growth rate prediction task is hampered
by its poor predictability as a function of GFP value by
the Monitor. In addition, as it was anticipated in the
background section, cell growth rate may have a rela-
tionship with the amount of resource pools (which are
assumed to be constant in the BM used in this study).
New models considering this aspect could give signifi-
cant benefits in the description and prediction of experi-
mental data from synthetic circuits, as well as improve
the understanding of biological systems features.
Our results show the outcome achieved via bottom-up

design process considering limited cell resources and
demonstrate the need of further efforts to improve
models for biological engineering, to disclose hidden in-
teractions among biological systems elements.

Methods
Strains, reagents and cloning
The E. coli TOP10 (Invitrogen) strain was used as a host
for cloning and quantitative assays. The strain was trans-
formed by heat shock at 42 °C according to manufac-
turer’s instructions. LB medium was used during
plasmid propagation. Antibiotics were always added to
maintain plasmids in recombinant strains: ampicillin
(100 mg/l), kanamycin (50 mg/l) or chloramphenicol
(12.5 mg/l). Long-term bacterial stocks were prepared
for all the engineered strains by mixing 750 μl of a

saturated culture with 250 μl of 80% glycerol, and stored
at −80 °C.
All the plasmids used in this study were constructed

through BioBrick(TM) Standard Assembly [60] and con-
ventional molecular biology techniques. As a result,
standard DNA junctions (TACTAG upstream of coding
sequences, TACTAGAG otherwise) are present between
assembled parts. The BioBrick(TM) basic or composite
parts used for DNA assembly were retrieved from the
MIT Registry 2008–2011 DNA Distribution [61], except
PluxRep, which was constructed in a previous study [49],
and the weak BBa_B0033 RBS that was placed upstream
of tetR via mutagenic PCR, replacing BBa_B0031.
DNA purification kits (Macherey-Nagel), restriction

enzymes and T4 DNA ligase (Roche), Phusion Hot Start
II PCR kit and T4 polynucleotide kinase (Thermo Scien-
tific) were used according to manufacturer’s instructions.
Plasmids were sequenced via the BMR Genomics DNA
analysis service (Padova, Italy). Oligonucleotides for mu-
tagenesis (REV_LUXWT: 5′-tttattcgactataacaaaccattttctt
gcg-3′, REV_LUXREP: 5′-gctagcattatacctgtacgatccta-
caggtg-3′, FWD_TET33: 5′- tactagagtcacacaggactactagat
gtccagattagataaaagtaaag-3′) were obtained from Meta-
bion International AG.
M9 supplemented medium (11.28 g/l M9 salts, 1 mM

thiamine hydrochloride, 2 mM MgSO4, 0.1 mM CaCl2,
0.2% casamino acids and 0.4% glycerol) was used in quanti-
tative experiments. HSL (#K3007, Sigma Aldrich) was dis-
solved in deionized water to prepare a 2 mM stock, stored
at −20 °C.

Circuits characterization
Fluorescence and absorbance of recombinant bacteria
incubated in a microplate reader were measured over
time as previously described [15, 49, 52]. Briefly, bacteria
from a glycerol stock were streaked on a selective LB
agar plate. After 16- to 20-h incubation at 37 °C, 1 ml of
selective M9 was inoculated with a single colony. For
strains expressing a repressor in absence of HSL, the in-
ducer was added at this step, at a proper concentration,
to allow them to reach a steady-state of intracellular
proteins, and to avoid long dynamics due to repressor
proteins degradation and dilution during the microplate
assay. After 21-h incubation at 37 °C, 220 rpm, in an or-
bital shaker, cultures were 100 fold diluted in a final vol-
ume of 200 μl in a 96-well microplate. HSL (2 μl) was
added when required, to reach the desired final concen-
tration. Cultures were not placed in the external wells of
the plate to avoid intensive evaporation during incuba-
tion. The microplate was incubated with lid in the Infin-
ite F200 microplate reader (Tecan) and it was assayed
via kinetic cycle: 15 s linear shaking (3 mm amplitude),
5 s wait, absorbance (600 nm) measurement, fluores-
cence measurements, 5 min sampling time. RFP and
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GFP fluorescence was measured with a gain of 80 with
the 535/620 nm and 485/540 filter pairs, respectively.
Control wells were always included, as described in the
Data processing section, to measure the background of
absorbance and fluorescence, and to provide internal
control references for relative activity calculations. At
least three biological replicates, starting from different
colonies, were assayed for each strain.

Data processing
Data analysis and graphs were carried out via Microsoft
Excel and Matlab R2007b or R2017b (MathWorks, Na-
tick, MA). Pairwise correlations and corresponding p-
values, as well as correlation matrices, were computed
via the Matlab corr function. Linear regression was car-
ried out via the Matlab regress function.

Raw absorbance and red fluorescence time series were
blanked by background subtraction as previously reported
[15, 62] to obtain OD600 and RFP time series. Sterile
medium and a non-fluorescent TOP10 culture were used
as absorbance and red fluorescence background, respect-
ively. Since a significant cell density-dependent autofluo-
rescence was previously reported for GFP measurements
with our experimental setup [63], green fluorescence was
blanked via a different procedure: for each GFP-
expressing strain, a control strain with identical circuit
and HSL concentration, but without GFP expression cas-
sette, was considered. The raw green (auto)fluorescence
(GFPauto) vs OD600 characteristic (at least two biological
replicates) was fitted via an exponential regression (
GFPauto tð Þ ¼ eqþm∙OD600 tð Þ); this curve was used to estimate
the green fluorescence background of a target culture,
given its OD600 at each time point. The GFPauto value was
subtracted from the raw fluorescence of the target culture
to obtain a signal proportional to the GFP level in the
whole culture. Fluorescent protein synthesis rate per cell
(Scell) was computed for each culture and fluorescent pro-
tein as Scell ¼ dF

dt ∙
1

OD600
(where F is the RFP or GFP level in

the whole culture) and it was averaged over the exponen-
tial growth phase (0.05 < OD600 < 0.18) [49]. The obtained
values were divided by the average Scell of a reference cul-
ture, constitutively producing RFP or GFP with the same
expression system under the control of the BBa_J23101
promoter, yielding Scell,norm. Reference cultures for RFP
and GFP have the BBa_J107029 and BBa_K173001 expres-
sion cassettes, respectively. When the growth rates of tar-
get strain and reference cultures are similar, Scell,norm is
equivalent to the Relative Promoter Unit value.

A strain only including the Monitor cassette was also
considered (herein called Monitor culture) to estimate
the GFP level without the cell load caused by the cir-
cuits. In this strain, a BBa_B0015 transcriptional termin-
ator was assembled upstream of the Monitor cassette to

enable GFP measurements with the BBa_J23100 pro-
moter in the same surrounding context of all the cir-
cuits, in which this terminator is always present
upstream of the Monitor cassette.

Growth rate was computed via linear regression of
ln(OD600) vs time characteristic in the 0.05 < OD600 <
0.18 window [49, 63].

The inclusion of specific control strains without Moni-
tor cassette in different conditions for target strain auto-
fluorescence estimation was necessary because such
background value was found to be not only OD600-
dependent, but also growth rate-dependent (see Add-
itional file 1: Figure S21-S22), and strains bearing cir-
cuits with or without Monitor have similar growth rates
(see Additional file 1: Figure S4A). The background of
the GFP reference culture and the Monitor culture was
estimated using the RFP reference culture as control.

Mathematical model description: No-burden model (NBM)
We considered models including Hill functions to de-
scribe activation and repression of proteins expression in
the analyzed circuits. Intracellular protein levels were
modelled via dynamic equations as previously performed
in many works [20, 28, 30], assuming the steady-state of
all the intracellular species in exponentially growing cells,
and assuming no metabolic burden affecting the cells.
The level of a repressor protein (Pj) in the NOT gate

blocks is computed as:

Pj ¼ 1
μþ γ j

�Sj ð1Þ

where γ is the protein degradation rate due to the LVA
tag, μ is the cell growth rate, which depends on recom-
binant strain and HSL concentration, and Sj is the Pj
synthesis rate per cell, defined as:

Sj ¼ δj þ αj

1þ Kj

Ij

� ��ηj
ð2Þ

where δ, α, K and η are the Hill equation parameters
that characterize the upstream regulated promoter; in
particular, δ is the basic expression rate in the off-state,
δ + α is the maximum expression rate, K is the input (I)
level corresponding to 50% of the expression rate range,
and η is the Hill coefficient (positive if the upstream pro-
moter is inducible, negative if repressible); finally, I is
the function input, which can be a per-cell protein level
(if the NOT gate has another NOT gate block upstream)
or HSL concentration (if the upstream block is an input
block). Growth rate is assumed to affect protein dilution
rate due to cell doubling, but not all the other processes
(e.g., transcription and translation).
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The immature (i.e., non-fluorescent) reporter protein
per-cell level (R) is computed as:

R ¼ 1
μþ a

�Sj ð3Þ

where a is the fluorescent protein maturation rate and
the other symbols have the same meaning as above. Fi-
nally, the mature reporter protein synthesis rate per cell
(Scell,norm), which is the measured output of the circuits,
is computed as [8]:

Scell; norm;RFP ¼ a�R ð4Þ
Scell,norm,RFP is expressed as arbitrary units of RFP

(AUR, if considering circuit output) per cell per time
(AUR cell−1 min−1). RFP per cell concentration is as-
sumed to be proportional to its respective arbitrary
units. To support the predictable interconnection of bio-
logical devices, inputs and outputs of all the circuit
blocks need to be expressed with the same units [20].
To this aim, the regulated promoter of all the blocks is
characterized in AUR cell−1 min−1 units and the intracel-
lular levels of all the proteins of the network can be
expressed as AUR cell−1. The basic underlying assump-
tions are that a promoter is able to drive any
downstream-connected gene to the same activity-
dependent expression level [28], and the resulting pro-
tein level is assumed to be proportional to the gene ex-
pression level [8]. Such assumptions enable to model
and re-use different biological devices by expressing
their activities in comparable units [20], in absence of
context-dependent variation of parts function [64].

Mathematical modelling in a limited resource context:
Burden model (BM)
In a limited resource context, RNA polymerase and ribo-
some intracellular levels have also to be taken into ac-
count. The full model derivation procedure and
assumptions are described in the work by Qian et al.
[37]. Briefly, from a structural point of view, the only dif-
ference between the BM and the standard model based
on Hill equation (NBM) is the presence of a denomin-
ator (D) that affects all the protein synthesis rates. Refer-
ring to Eq. 2, the protein synthesis rate term becomes:

Sj ¼ Smax;j

D
ð5Þ

Smax;j ¼ δj þ αj

1þ Kj

Ij

� ��ηj
ð6Þ

D ¼ 1þ
XM

k¼1
Jk �Smax;k ð7Þ

where M is the number of expressed proteins in the cell,
Smax,k is the maximum achievable synthesis rate of the

k-th expressed protein, and Jk is the related resource
usage parameter, representing a measure of the burden
caused by the k-th protein. This denominator includes
not only the effect of the genes in the synthetic network,
but also the ones of the organism. The sum of the or-
ganism gene contributions to the burden (z) can be as-
sumed to be a constant circuit- and induction-
independent term:

z ¼
XC

k¼1
Jk �Smax;k ð8Þ

where C is the number of expressed organism genes.
The denominator D can be re-written as:

D ¼ 1þ z þ
XY

k¼1
Jk �Smax;k ð9Þ

where Y =M-C is the number of proteins expressed in
the synthetic circuit. Being (1 + z) a constant term, D
can be rescaled by dividing each term by (1 + z) to ob-
tain Db :

Db¼ 1þ
XY

k¼1
Jk �Smax;kb

ð10Þ

where Smax;kb are the maximum achievable synthesis
rates rescaled by (1 + z). In this case, all the synthesis
rates and intracellular protein levels in the model are
rescaled by this term. For this reason, the Pj, Smax,j and
Sjin the BM can be interpreted as the protein level, max-
imum synthesis rate and actual synthesis rate relative to
the endogenous resource usage term, 1 + z, without af-
fecting their units or the functionality of the model. In
the BM, the Hill equation represents the maximum
achievable synthesis rate (Eq. 5–6) and has a different
interpretation compared to the NBM, in which it repre-
sents the actual synthesis rate (Eq. 2). Since all the cir-
cuits analyzed with the BM contain the Monitor
cassette, the constant contribution of GFP expression
was included among the organism genes (although
GFP expression was found to have a negligible contri-
bution to cell burden, as described in the Results and
Discussion section) without affecting the meaning of
the described quantities.
The resource usage terms, J, are expressed in (AUR

−1

cell min) units. However, the contribution to Db of non-
regulated proteins in the circuits (i.e., LuxR in the input
blocks) is herein expressed by the dimensionless con-

stant term Σ ¼ J �Sb .
Differently from the NBM, GFP expression is also

modelled to enable the quantification of cell burden.
The intracellular level (G) of immature GFP is
computed as:
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G ¼ 1
μþ aG

�Sm
Db ð11Þ

where aG is GFP maturation rate, Sm is the synthesis rate
in the Monitor cassette (expressed as arbitrary units of
GFP - AUG - cell−1 min−1), and the other symbols have
the same meaning as above.
Analogously to the RFP output, the Monitor cassette

output is described as:

Scell; norm;GFP ¼ aG �G ð12Þ
In addition to the NBM assumptions, we further as-

sume that RNA polymerase and ribosome levels are not
affected by cell growth rate, and that cell burden and
growth rate do not considerably affect the transfer
function of input devices due to LuxR protein level
variation [39]. The inclusion of these two phenomena
would require a model relating growth rate and RNA
polymerase/ribosome levels, and the explicit model-
ling of LuxR production and binding with HSL via a
mechanistic model, such as the one proposed by
Carbonell-Ballestero et al. [53]. Both interventions are
beyond the scope of this work and can be topic of
additional modelling studies.

Model fitting and analysis
Matlab R2007b was adopted for model fitting and ana-
lysis. Fitting was performed using the weighted least
squares method via the lsqnonlin function. For each data
point at a given HSL concentration, the weight of the i-
th squared residual was set to wi ¼ 1

σ2i
, where σi is the

standard deviation of all the biological replicates at the
given HSL concentration. Biological replicates showed a
relatively low variability in terms of growth rate (average
CV of 12%, with a range of 1–36%); for this reason, the
growth rate of recombinant strains was set to the aver-
age growth rate value at a given HSL concentration.
Unless differently stated, the NBM and BM were fitted

sequentially: in the NBM, the Hill parameters of the four
input blocks were first learned individually; then, the Hill
parameters of the two NOT gates were learned individu-
ally, by setting the Hill parameters of their input devices
to the values estimated in the first learning step. In the
BM, the four input blocks were first simultaneously fit-
ted to estimate the respective Hill parameters and the
burden-related parameters, i.e., JRFP, ΣXλ, ΣXlac and ΣXtet;
then, the Hill parameters of the two NOT gates, as well
as their burden-related parameters, Jtet and Jlac, were
learned individually as before, by setting the other
parameters to the previously estimated values.
Implicit equations, commonly occurring in the BM

due to the presence of protein levels on the left and right

hand side (see Eqs. 1, 5–7), were solved using a custom
Matlab script implementing the fixed point method.

The NBM and BM were also fitted by using the data
of all the circuits, and their parameters were all simul-
taneously estimated. In this case, the two models were
compared via the Likelihood Ratio (LR) test, in which

the log-likelihood value was computed as LL ¼ −ffiffiffiffiffiffi
2π

p
�PN

i σ i þ 1
2

PN
i r

2
i

� �
considering RFP data, where N

is the number of data points and r2i is the i-th weighted
squared residual, assuming that experimental data are
affected by uncorrelated Gaussian error with standard
deviation σ.

Unless differently indicated, fixed values were used for
the following parameters in all the fitting and simulation
procedures: γtet=0.0173 min−1 [51], γlac=0.0533 min−1

[65], a = 0.0167 min−1 [29] and aG = 0.0462 min−1 [29].
A Monte Carlo approach was adopted to estimate par-

ameter uncertainty and to propagate it throughout the
model fitting procedure. For each model fitting step,
10,000 synthetic datasets were created by adding Gauss-
ian noise (with zero mean and variance σ2

i ) to the model
prediction computed with the estimated parameters
[49]. Negative data were set to zero. The fitting proced-
ure was carried out for each dataset and a distribution of
estimated parameters was obtained. In the stepwise pro-
cedure, parameter sets were randomly extracted from
the previously obtained distribution instead of fixing
them during the NOT gates model identification step, to
properly propagate the uncertainty of parameter estima-
tion to the downstream learning steps.

Univariate sensitivity analysis (i.e., performed on a
single Hill parameter - δ, α, K or η - for all the
blocks of a circuit) was carried out by following the
Monte Carlo method illustrated above, but replacing
the target parameter distribution with a Gaussian
distribution with the same mean and CV = 25%. This
variability was set to impose that the 95% confidence
intervals of parameters (p) are 0.5*p and 1.5*p,
which are reasonable context-dependent variability
values seen in other studies (although larger variabil-
ity can be observed in distribution tails [22]). Multi-
variate sensitivity analysis (i.e., performed on all the
four Hill parameters in all the blocks) was carried
out analogously, except that the Hill parameters
were extracted from a multivariate Gaussian distribu-
tion, taking into account the correlation between
parameter estimates.
Monte Carlo model simulations, aimed to predict the

test set circuits output, were carried out by extracting
parameter sets from the estimated distributions. Predic-
tions were performed by fixing the growth rates to the
experimentally measured values.
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