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Abstract

Background: Synthesis of a variety of biological circuits for specific functional purposes has made a tremendous
progress in recent years. The ultimate goal of combining molecular biology and engineering is to realize a
functional biocomputer. To address this challenge, all previous efforts work toward building up the bio-computer as
the ultimate goal. To this aim, there should be a key module, named control unit (CU), to direct a serious of logic
or arithmetic operations within the processor.

Methods: This research task develops a bio-CU to work with a bio-ALU, which is realized from the combination of
previously developed genetic logic gates to fulfill the kernel function of CPU as those done in the silicon computer.

Results: A possible framework of the bio-CPU has demonstrated how to connect a bio-CU with a bio-ALU to
conduct a fetch-decode-execute cycle of a macro instruction. It presents not only capability of 4-bit full adder but
coordination of related modules in biocomputer.

Conclusions: We have demonstrated computer simulation for applications of the genetic circuits in biocomputer
construction. It’s expected to inspire follow-up study to synthesize potential configurations of the future biocomputer.

Keywords: Synthetic biology, Genetic logic circuit, Arithmetic and logical unit, Control unit

Background
Synthesis of a variety of biological circuits for specific func-
tional purposes has made a tremendous progress in recent
years. The ultimate goal of combining molecular biology
and engineering is to realize the biocomputer [1–3]. In
particular, synthesis of fundamental Boolean logic gates [4]
and design of genetic oscillator [5, 6] have been
successfully or partly successfully reached since the earliest
research effort focused on creating oscillating behavior of a
genetic circuit in 2000 by Elowitz and Leibler [7]. Basically,
a biological circuit is different from its counterpart in the
digital logic circuit; the former uses chemical reaction of
gene expression to simulate on and off states of the protein
concentration [8] with DNA-binding proteins and
DNA-binding factors expressing protein concentration for
a specific logical function [9]. With the rapid development
of synthetic biology, a class of combinational and sequen-
tial genetic logic circuits [10–12] have been developed
toward specific applications. Fast grow of synthetic biology

is because most of the biochemical reactions can be de-
scribed in terms of mathematical models through the use
of non-linear Hill differential equations [13] and computer
simulation before conducting real-world experiments.
All of the efforts work toward building up a functional

bio-computer as the ultimate goal [14, 15]. To this aim,
there should be a key module, named control unit (CU), to
direct a serious of logic or arithmetic operations within the
processor. It guides the computer’s memory, arithmetic/
logic unit (ALU) and input/output devices to respond
macro instructions by arranging timing and control signals.
Following our previous works [16–21], we continue to

develop a bio-CU working with the bio-ALU, which is re-
alized from the combination of previously developed gen-
etic logic gates to fulfill the kernel function of CPU as in
the silicon computer. A standard CPU consists of three
cores: CU, ALU and memory. The ALU is triggered by the
CU when it receives instructions. An instruction cycle in-
cluding “fetch-decode-execute” is the standard operating
procedure of the CPU. That is, fetching data from mem-
ory, decoding instruction into executable commands and
executing the instruction by the ALU. The result is next
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stored in a temporary register for further processing. Once
the process is completed, the CPU sets itself up to wait for
the next instruction to come.
In this research task, we propose a possible framework

of the bio-CPU to demonstrate how to connect a bio-CU
with a bio-ALU to conduct a fetch-decode-execute cycle
of a macro instruction (for the demonstration purpose,
shown here is only a half function of the instruction cycle),
see Fig. 1. The paper presents not only the capability of
4-bit full adder but the coordination of related modules in
a biological computer.

Method
Design of bio-register
In the silicon CPU, the inherent registers are used to
temporarily store data while the computational kernel
conducting logic or arithmetic operation. In general,
there are instruction register, program counter, temp
register, and accumulator insider a CPU. Inside of a
one-bit register, there is an edge-triggered D-type
flip-flop, which constitutes the fundamental unit of the
register. A D-type flip-flop is made up of a NOT gate,
two AND gates and four NAND gates.

Fundamental genetic logic gate
In the traditional electronic circuits, one uses several
Boolean logic gates to realize a CPU. Before constructing
a biocomputer in the genetic system, we start here by
constructing a class of genetic logic gates. The genetic
expression consists of the transcription and translation
processes [16]. When the enzyme RNA polymerase
(RNAp) is restricted to the relevant promoter, the DNA
transcript is converted to messenger RNA (mRNA),
and the transcription rate is controlled by transcrip-
tion factors (TF). Assembling a variety of standard
biological sites, including reporters of the coding

regions and transcription factors, RNA, promoters,
can lead to functional realization of a fundamental
genetic logic gate [9].
The mathematical model describing the biochemical

response of the genetic system consists of a set of two
differential equations is given by [7].

_mi ¼ αi f i uð Þ−γmi
mi þ αi;0;

_pi ¼ βimi−γpipi; i ¼ 1;…; L ð1Þ

where mi and pi represents, respectively, concentra-
tions of mRNA and protein of the gene i, γmi

and γpi
represent, respectively, degradation rates of mRNA
and protein, αi is transcription rate of mi, βi is syn-
thesis rate of pi, αi, 0 is basal rate, fi(⋅) denotes the
promoter activity function used to describe the non-
linear transcriptional reactions, and u is concentration
of TF from other inducers to control the gene
expression.
A gene with an operator site can bind to a repressor

or activator TF, and the promoter activity of the genetic
logic NOT can be described as

f NOT uð Þ ¼ 1

1þ u
K

� �n ð2Þ

where fNOT is a promoter activity function for logical
NOT, u is concentration of the repressor or activator TF,
n is Hill coefficient representing cooperatively effect be-
tween TF and the corresponding operator, and K is Hill
constant. The binding site is inserted into the promoter
region of the target gene. For the genetic expression of
the logic NOT, the gene is activated by binding to the
repressor TF in the corresponding operon, and its state
is inactivated by binding the repressor TF. The frame-
work is shown in Fig. 2a.
A gene with two manipulation sites can bind two re-

pressors TFs or activator TFs, and the promoter activity
of the genetic logic AND gate can be described as

f AND u1; u2ð Þ ¼
u1
K1

� �n1 u2
K2

� �n2

1þ u1
K1

� �n1 þ u2
K2

� �n2 þ u1
K1

� �n1 u2
K2

� �n2

ð3Þ
where fAND is a logic AND promoter activity function
[22], u1 and u2 are concentrations of repressor or activa-
tor TFs, K1 and K2 are Hill constants of u1 and u2, re-
spectively, n1and n2 are the corresponding Hill
coefficients. For the logic AND gate, the protein is pro-
duced only in the presence of two TFs, see Fig. 2b. The
NAND gate can be implemented by cascading a NOT
gate and a AND gate, see Fig. 2c.
A combination of biological registers may include

at least NOT, AND, NAND, and some other

Fig. 1 Instruction flow inside the biocomputer. It shows the
instruction flow that operates in the biocomputer, the process of
the Decode and Execute are operated in the ALU and CU

Lin et al. Journal of Biological Engineering  (2018) 12:14 Page 2 of 16



fundamental logic gates. One is referred to details of
the creature from [13]. For practical realization, het-
erogeneous regulation can be used to synthesize an
AND gate in Escherichia coli. The AND gate in-
cludes the coactivating genes hrpR and hrpS con-
trolled by the promoter input, and the output
depends on the σ54-dependent hrpL promoter.
When the ribosome binding site (RBS) serves as is
used as a linear amplifier, it is applied to regulate
protein expression levels. It is next to cascade a
NOT gate that is assembled with the cI/Plam repres-
sor module containing the f lambda gene cI and PR
promoters.
By the above description, a modular combinational

NAND gate can be generated as illustrated in Fig. 3. To

establish the simplified model, we focus only on the
steady state behavior of the mRNA as

mi ¼ αi
γmi

f i uð Þ þ αi;0
γmi

ð4Þ

_pi ¼ αPi f i uð Þ−γPi
pi þ αP0;i ð5Þ

The protein dominated response is given by the dy-

namic eq. (5) where the parameters αPi ¼ αiβi
.
γmi

and

αP0;i ¼ αi;0βi
.
γmi

. Established in the abbreviated dy-

namic equation and Fig. 3, the dynamic equation for

Fig. 2 Structure of the fundamental genetic logic gates. a NOT gate b AND gate c NAND gate. Figure a, b, and c represent the genetic
sequences for expressing the logic functions, respectively

Fig. 3 Combinational genetic NAND gate. The structure illustrates the NAND gate in the biology
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Fig. 4 Schematic diagram of the biological D-type FF. This figure shows the D-type FF structure that is synthesized by the corresponding
genetic sequences

Fig. 5 a Truth table of D-FF. b Normalized response of the biological D-FF. a The truth table uses 1 and 0 to represent, respectively, high and low
concentration levels. b The output is generated by the genetic circuit that uses protein concentration to represent the state response
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characterizing the behavior of the genetic NAND is ob-
tained as

_pAND ¼ αP f AND u1; u2ð Þ−γPpNAND þ αP0;AND;
_pNOT ¼ αP f NOT pANDð Þ−γPpNOT þ αP0;NOT ;
pAND u1; u2ð Þ ¼ pNOT

ð6Þ

The correct behaviour of pAND(u1, u2) confirming the
truth table of a NAND gate can be easily observed by
considering the steady-state response of pAND(u1, u2) de-
scribed by (6).
Before proceeding with the system design, it should

first be remarked that the system architecture adopted
in this research is based on assembling several funda-
mental logical gates and circuits we published in the
previous works [10, 17, 22] without making significant
changes. All of the parameters used in the gates or cir-
cuits can be found from these references.

Synthesis of genetic D Flip flop (D-FF)
D-FF consists of several biological logic gates with a clock
input as a state triggering command. Figure 4 illustrates

implementation of the equivalent biological circuit. As
shown in the figure, a similar conclusion in the digital
circuit can be expected by adding a high or low protein
concentration as the input.

_pAND1 ¼ αP f AND D;Q
� �

−γPpAND1 þ αP0;AND1;

_pAND2 ¼ αP f AND pNOT Dð Þ;Qð Þ−γPpAND2 þ αP0;AND2;

Q ¼ pNAND3 pNAND1 pAND1; clockð Þ;Q� �
;

Q ¼ pNAND4 pNAND2 clock; pAND2ð Þ;Qð Þ
ð7Þ

The edge-triggered D-FF model can be represented
using the Hill differential eq. (7) where pNOT is gener-
ated by _pNOT ¼ αP f NOT ð�Þ−γPpNOT þ αP0;NOT , D is the
protein concentration input, the clock is a periodic
biological signal. Simulation results show the results
of the truth table of D-FF in Fig. 5a. The normalized
output response of the biological D-FF is shown in
Fig. 5b. When the clock signal goes from low to high,
the leading edge triggers the subsequence response

Fig. 6 Bio-ALU schematic diagram of the operating process. It illustrates the operating flow of the bio-ALU. First, the executed data is stored to the
temp register. Second, the data is propagated to the full adder for execution. Finally, the processed data is propagated to the bio-accumulator and
stored in the bio-accumulator. All of the operating steps is synchronized to the clock

Fig. 7 Synthesis of a full adder based on two half-adders. The structure is shown by the logic gates in electronics which is constructed by
two half-adders
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where the clock signal can be generated by a genetic
clock source [18, 21]. From this point of view, the
stimulated concentration level changes at a time when
intensity of the clock signal is enough to stimulate an
accurate response. On the other hand, it is found that
the signal exhibits a time delay compared to the ideal
response ion the electronic circuit. This is acceptable
in the biological systems because biochemical reac-
tions are fairly slow.

Bio arithmetic logic unit
An ALU in the electronic circuit performs arithmetic
and logical operations on the operands from the com-
puter instruction word, such as addition or subtrac-
tion. A series of biological registers have been
established in the previous work [16], and the bio-
logical arithmetic architecture has been proposed to
develop basic biological computers. The simplified
architecture is shown in Fig. 6. The three genetic

Fig. 8 Genetic half-adder structure. The structure is constructed by the corresponding gene sequences

Fig. 9 Genetic 1-bit full adder structure. The structure is constructed by the corresponding gene sequences
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circuits and the corresponding clock pulses are con-
nected together. Temporary registers and genetic ac-
cumulators are created by 4-bit parallel input and
parallel output (PIPO) genetic registers. In the middle
is a 4-bit genetic full adder for arithmetic operations.
This model is used to implement fundamental arith-
metic operations in the simplest bio-computer. Here,
we only focus on implementing basic full-addition
arithmetic operations without considering data acqui-
sition and storage.

Genetic full adder
In the electronic circuit, mathematical addition is ful-
filled by a full adder involves two half-adder in series
[23]. The combination of two molecule inputs and a
variety of genetic logic gates can be found from [15].
A genetic half-adder can be produced in a single
mammalian cell, which produces a different reaction
between erythromycin and phloretin. Through the use
of natural or synthetic cell-cell communication [24],
one can create a pattern formation based on func-
tional modules. Following the previous development,
we can use two gene-controlled binary adders to con-
struct a gene binary full adder shown as in Fig. 7. As
stated, a one bit genetic full-adder is fulfilled by cas-
cading two genetic half-adders and an OR gate with
the promoter activity functions for XOR gate within
the half adder and the OR gate given by [25] where
fOR and fXOR in the following equations are the pro-
moter activity functions for logic OR and XOR,

respectively. Definitions of all parameters follow those
defined in (3).

f XOR u1; u2ð Þ ¼
u1
K1

� �n1 þ u2
K2

� �n2

1þ u1
K1

� �n1 þ u2
K2

� �n2 þ u1
K1

� �n1 u2
K2

� �n2 ð8Þ

f OR u1; u2ð Þ ¼
u1
K1

� �n1 þ u2
K2

� �n2 þ u1
K1

� �n1 u2
K2

� �n2

1þ u1
K1

� �n1 þ u2
K2

� �n2 þ u1
K1

� �n1 u2
K2

� �n2 ð9Þ

The output of the first half-adder will be the input to
the second half-adder. Referring directly to the
half-adder structure shown in Fig. 8, it can be seen that
a transcription factor was used as input for transcription
of the gene. A one-bit full adder is realized in Fig. 9.
Based on the truth table of full adder we conduct simu-
lation study with the results shown in Fig. 10a-b. A
four-bit full adder is a direct extension of one-bit version
which can be created by concatenating four one-bit gen-
etic full adders together, see Fig. 11. Performing the
simulation confirms the correct result of the system
where the input augend, addend, and the output re-
sponse are shown in Fig. 12a-c.

Bio control unit
CU is a kernel of CPU that is responsible for all opera-
tions being carried out. The memory, registers and ALU
will wait until CU directs the system to execute instruc-
tions. The structure of CU system can be as illustrated

Fig. 10 a Truth table of one bit full adder. b Genetic one bit full adder responses. a The table shows the result. b The result is produced by the
genetic circuits with the dashed ellipsoid emphasizing the corresponding binary status
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in Fig. 13, in which a ring counter is responsible for
what instruction is the next in the operational sequence.
The inputs of CU come from the instruction decoder
which determine the instruction, such as MOV, ADD or
SUB, to be executed. Once the instruction is received

from the instruction decoder, the CU will allocate the
corresponding outputs.
In the biological terms, accompanied by a genetic

clock generator to generate clock signals, all of the data
is originally stored in a bio-memory [26] until the

Fig. 11 Structure of a genetic four-bit full adder. The structure is assembled by four one-bit full adders with a cascaded connection
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bio-CU fetch and put it in a bio-temp register. Next, the
data stored at the bio-temp register is moved to a
genetic-full adder for execution. After the 4-bit genetic
full adder accomplishes the task, the result is first moved
to a genetic accumulator and next moved back to the
bio-memory. The bio-CU plays the role of a commander
among all functional modules. Details of all modules are
described in the follows.

Bio ring counter
The bio-ring counter here is composed of five D-type
FFs. It is an application of a shift register with the major
difference being output of the last FF connected to input
of the first FF, see Fig. 14. We use the ring counter as a
counter to decompose the clock into four phases for in-
struction execution.
Let’s consider the demonstration result of the ring

counter shown in Fig. 15. The counter starts as the first
clock comes, T0 is triggered by the first clock pulse, and
T1 follows T0 while T0 goes from high to low. The
process (T0 to T4) goes through 5 FFs until the last FF
(T4) starts over. This five bits ring counter goes through

Fig. 12 a Protein concentration of the four-bit augend. b Protein concentration of the four-bit addend. c Output response of the four-bit genetic
full adder. The dashed ellipsoid line explains the result of addition of the augend and the addends of the first clock cycle

Fig. 13 Structure of the bio-control unit. The structure works with a
ring counter and the decoder
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5 sequences within the cycle: 00001, 00010, 00100,
01000, and 10,000.

Bio-temporary register and bio-accumulator
The function of temporary register is to save data
fetched from memory. An accumulator is a register for

temporarily saving data for or after calculation from the
arithmetic and logical unit (ALU). Temporary register
and accumulator are also called as the operand registers
because they offer operands to ALU.
We refer to Intel 4004 for construction of the basic

4-bit computer architecture. In the computer architec-
ture, data store and fetch are important steps, so for the
4-bit register, we synthesize it by combining several gen-
etic D-FFs, which can be realized during the biochemical
reaction. The action of data read appears at the rising
edge of the clock.
The reaction of the sequential process should be syn-

chronized with the clock signal. When the trigger’s
strength of the clock signal is sufficient to stimulate the
exact response, the concentration level of the D-FF out-
put follows.
For the PIPO bio-register, the 4-bit data enters in the

parallel manner and is transferred in parallel to the cor-
responding outputs Qa to Qd in a clock pulse. Its sche-
matic diagram is illustrated in Fig. 16.
The CU directs output of the adder to the accumu-

lator, and data to be operated is placed in the tem-
porary register where the 4-bit PIPO configuration is
adopted to construct temporary register and accumu-
lator which is triggered by a clock signal generator to
synchronize state transmission.

Fig. 14 Structure of the bio-ring counter. The five-bit ring counter is cascaded by connecting five D type FFs with feedback from the last FF
output to the first FF input. All FFs are triggered simultaneously by the genetic clock. It works like a shift-register with feedback

Fig. 15 Simulation result of the bio-ring counter. The result shows
the changing concentration level for each D type FF in the bio-ring
counter. Each triggering state of the bio-ring counter has its specific
purpose depicted in Table 2
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A full 4-bit addition requires five clocks to fulfill
the entire work. When the instruction is triggered, all
data will be placed in the register first. After the in-
struction being executed, the resulting data will be
left in the accumulator. However, the data still needs
to be stored back to the memory after execution.
Figure 17a shows the bit states of the two temp regis-
ters. Figure 17b shows the resulting states of the 4-bit
accumulator with a carry after performing addition.

Decoding of instruction
To fulfil a specific instruction, the CU needs to
determine the steps required to complete the instruc-
tion generated by the instruction decoder which reads
instruction from memory. The instruction decoder
takes data stored in the instruction register and de-
codes it. The circuit of the instruction decoder for
five fundamental logic/arithmetic functions is illus-
trated in Fig. 18.
The CU system in the digital computer is estab-

lished by the output of instruction decoder collocated
with a ring counter and several logic gates, see Fig. 19.

An instruction enters the CU system while the in-
struction decoder decodes the instruction. Once the
instruction decoder decodes the instruction and sends
a corresponding output, the CU system carries out
the required steps with the ring counter to enable the
selected unit. The SUB is completed in five pulses by
the ring counter. From T0 to T4, the CU enables the
registers inside the CU system, see Table 1 for the
working sequences to conduct the arithmetic subtrac-
tion (SUB).
Table 2 shows the execution steps of the CU. Using

SUB as the example. First of all, at the time instant
T0, the instruction to be executed is loaded from
memory to the instruction register (IR), then the pro-
gram counter keeps the address of the instruction be-
ing executed at T1, and the instruction loads data to
the register A from memory at T2. At T3, the pro-
gram counter holds the memory address of the next
instruction-the subtraction operation from the register
A and accumulator. Finally, at T4, the CU executes
the instruction SUB and keeps data in the accumula-
tor. The steps for accomplishing an arithmetic sub-
traction are accomplished under the command

Fig. 16 Schematic diagram of the PIPO register. The four-bit PIPO register is cascaded by connecting four D type FFs with each FF accepting
data input simultaneously
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directed by the CU which decomposes instruction to
several data movements between memory and ALU.

Simulation result
We demonstrate partial function of the instruction
cycle which includes acquiring instruction from the
instruction decoder and triggers ALU at the proper
timing. Using the instruction SUB as an example,
once the CU receives the instruction SUB from the
instruction decoder, the individual steps to ensemble
the instruction are activated sequentially. Fulfilment
of a SUB instruction consists of five steps as illus-
trated in Fig. 20. The 5-stage ring counter repeats
every five clock pulses and the ALU is triggered at

T4, see Fig. 20. The ALU is triggered when T4 goes
from low to high at t = 120, see Fig. 21. The data is
stored back to the ACC once ALU fulfils the
operation.
In terms of biological circuits, the bio-CU and

bio-ALU are created under synthetic biology. All of
the circuits are composed of several genetic logic
gates which use protein concentration as the signal
input or output, the output reaction resembles indi-
vidual behaviour of a variety of logic gates. The clock
signal can be generated by a genetic clock generator
which can be synthesized from an oscillator with a
toggle switch. While responses of all functional mod-
ules presented here are not perfect as those of their
counterparts in the silicon computer, the preliminary

Fig. 17 a Two genetic register output responses. b Bio-accumulator output responses. a Changes of concentration in the two genetic registers
are data to be added together. b The bio-accumulator produces the result after performing binary addition
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simulation study reveals the possible reactions in
terms of the genetic circuits.

Discussion
Synthetic biological circuit design is commonly in-
spired by the natural biological circuits using tran-
scription factors. There are already biological circuits
revealed in the literature using the transcription fac-
tor for construction [7, 27–29], some of the circuits
use recombinases as the pathways [30, 31]. In this
primitive research task, the biological circuits are re-
alized from the viewpoint of mathematics and
engineering. There were biological circuits with

Fig. 18 Instruction decoder. The decoder determines the instruction
sets to be executed by the bio-CPU

Fig. 19 Hardware of the bio-CU. This figures displays hardware structure of the bio-CU. The logic gates in this figure are constructed by a variety
of fundamental genetic logic gates. The working sequence is controlled by the bio-ring counter accompanied with the opcode

Table 1 Sequence for realizing an arithmetic subtraction (SUB)
SUB
A,#n

CP LD_
I

LD_
A

LD_
ACC

LD_
MEM

E_
A

E_
MEM

E_
ACC

SUB ADD Instruction

T0 0 1 0 0 0 0 1 0 0 0 IR←
MEM

T1 1 0 0 0 0 0 0 0 0 0 PC←
PC + 1

T2 0 0 1 0 0 0 1 0 0 0 A←
MEM

T3 1 0 0 0 0 0 0 0 0 0 PC←
PC + 1

T4 0 0 0 0 0 1 0 1 1 0 ACC←
A-ACC
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specific purposes developed and experimentally real-
ized [1, 11, 12, 32–36]. This research task moves
forward one step by building up a class of biological
circuits which possess sophisticated functions includ-
ing bio-sequential circuits and bio-combinational cir-
cuits. Virtually all circuits in practical digital devices
are a mixture of combinational and sequential logic
which forms as a basis for constituting a functional
biocomputer.
However, the biological circuits being totally re-

placed by biological molecules still have lots of issues
to be solved in nature. Fortunately, there are some
impressive progresses unveiled recently. For example,
setting up measurement devices to show fluorescence
concentrations of a series of repressor or activating
genes with different promoter-RBS components and
TF by fluorescence measurement has been developed
[37]. Synthetic biologists have also created software
(such as the Web-based Cello [38]) that automates
the design of DNA circuits for living cells. The re-
search team led by Prof. Voigt has developed user in-
terfaces for Cello that would allow biologists to
develop a single program and be returned different

DNA sequences for targeted organisms. The library
encompasses rich information of system parameters
related to the mathematical model describing for the
behaviors of a class of genetic logic gates. Therefore,
one would be easier to choose suitable promoter RBS
components to realize various biological circuits and
construct them based on the proposed topology.

Conclusions
Nowadays, science and technology evolve extremely
fast than the past decades, the major reason should
attribute the success to the invention of the com-
puter. It can make many tedious computational works
be processed by itself efficiently and manipulate a
huge amount of data at one time. This paper presents
an innovative idea that proposes a novel bio-CU
structure based on the previously developed genetic
circuits. The structure is basically referred to the fun-
damental silicon CPU. It is believed that if the bio-
computer becomes mature in the near future, there
will be increasing applications that may revolutionize
breakthrough in other fields. As for applications, the
DNA computer is reaching to a fair level that could
be used for detection of genetic disease with gene
therapy. For example, the DNA computer can meas-
ure the concentration of a specific antibody and it is
possible to determine whether a patients is suffering
from a particular disease. A DNA computer can de-
termine whether a specific drug is needed based on
the presence of one or more antibodies [39, 40]. Tak-
ing a biocomputer into the body from a pill is like to
implant a subminiature doctor into patient’s body. Be-
cause of the function of bio-memory, it could store
the information of diseases [41]. Through the tran-
scription factors to regulate genetic sequences and

Table 2 Operational sequence of the demonstrative instructions
Mnemonic Effect T0 T1 T2 T3 T4

MOVA ACC←
Memory

IR←
Memory

PC←
PC + 1

ACC←
Memory

PC←
PC + 1

ADD A ACC←
ACC + A

IR←
Memory

PC←
PC + 1

A←
Memory

PC←
PC + 1

ACC←
(A + ACC)

SUB A ACC←
A-ACC

IR←
Memory

PC←
PC + 1

A←
Memory

PC←
PC + 1

ACC←
(A-ACC)

OUT A Memory←
ACC

PC←
PC + 1

IR←
Memory

PC←
PC + 1

Memory←
ACC

HLT STOP

Fig. 20 Q4 is triggered at t = 120. The figure demonstrates
subtraction executed by the bio-CPU where the bio-ALU is triggered
when T4 goes from low to high at t = 120

Fig. 21 Result of subtraction. The bio-ALU executes a
4-bit subtraction

Lin et al. Journal of Biological Engineering  (2018) 12:14 Page 14 of 16



produce the specific protein is equivalent to the
process that one inputs the instructions to dictate the
computer to execute a specific function. Figure 22
demonstrates the schematic diagram of the use of a
biocomputer for the diagnosis purpose.
The idea presented here is primitive which is not

rigorous enough. Actually, the idea was originated
from the silicon computer. However, there were sig-
nificant modifications which have been conducted in
our research such as the interface handling between
two modules and signal shaping of the output of gene
circuits as their output responses are not fast enough.
This causes the signal’s status change ambiguously
leading to unavoidable delay during signal transition
in the sequential circuit. Of course, there are many
issues to be addressed before a full functioned bio-
computer is ultimately realized.
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