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Abstract

Background: Flow cytometry, with its high throughput nature, combined with the ability to measure an increasing
number of cell parameters at once can surpass the throughput of prevalent genomic and metagenomic
approaches in the study of microbiomes. Novel computational approaches to analyze flow cytometry data will
result in greater insights and actionability as compared to traditional tools used in the analysis of microbiomes. This
paper is a demonstration of the fruitfulness of machine learning in analyzing microbial flow cytometry data
generated in anaerobic microbiome perturbation experiments.

Results: Autoencoders were found to be powerful in detecting anomalies in flow cytometry data from
nanoparticles and carbon sources perturbed anaerobic microbiomes but was marginal in predicting perturbations
due to antibiotics. A comparison between different algorithms based on predictive capabilities suggested that
gradient boosting (GB) and deep learning, i.e. feed forward artificial neural network with three hidden layers (DL)
were marginally better under tested conditions at predicting overall community structure while distributed random
forests (DRF) worked better for predicting the most important putative microbial group(s) in the anaerobic digesters
viz. methanogens, and it can be optimized with better parameter tuning. Predictive classification patterns with DL
(feed forward artificial neural network with three hidden layers) were found to be comparable to previously
demonstrated multivariate analysis. The potential applications of this approach have been demonstrated for
monitoring the syntrophic resilience of the anaerobic microbiomes perturbed by synthetic nanoparticles as well as
antibiotics.

Conclusion: Machine learning can benefit the microbial flow cytometry research community by providing rapid
screening and characterization tools to discover patterns in the dynamic response of microbiomes to several
stimuli.

Keywords: Flow cytometry, Machine learning, Microbial community fingerprinting, Pattern recognition, Anaerobic
digestion, Deep learning

* Correspondence: bhalerao@illinois.edu
Department of Agricultural and Biological Engineering, University of Illinois at
Urbana-Champaign, 1304 W. Pennsylvania, Urbana 61801, USA

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Dhoble et al. Journal of Biological Engineering  (2018) 12:19 
https://doi.org/10.1186/s13036-018-0112-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s13036-018-0112-9&domain=pdf
http://orcid.org/0000-0001-7624-9126
mailto:bhalerao@illinois.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
The science of microbial ecology is on the verge of revo-
lution [1] partly due to the decreasing costs of next gen-
eration sequencing (NGS) [2] and the increasing
popularity of flow cytometry microbial characterization
[3, 4]. The current processing pipeline for NGS requires
~ 14 h compared to ~ 2 h for flow cytometry. At this
time, flow cytometry is significantly more high through-
put for resolving rapid dynamic changes in the structure
and function of the microbial communities over time,
which is particularly crucial for studying health and well-
ness in dynamic biosystems [5]. To keep up with the in-
formation throughput, there is a need to develop tools
that measure microbiome features beyond genomic or
functional diversity [6]. During the past 50 years, flow
cytometry has been proven as an established tool for sin-
gle cell analysis [7, 8]. Currently, there are over 100
companies in the flow cytometry business worldwide
constituting more than $3 billion [9]. Since its genesis in
1965 [10] and increased popularity since the 1970s [11],
the basic design of flow cytometers has remained almost
unchanged, which emphasizes its technological robust-
ness and is an ideal tool for building actionable solutions
for microbiome research community.
Previously, we demonstrated the utility of flow cytom-

etry in classifying microbial consortia based on morpho-
logical and metabolic characteristics complementing
existing genomic technologies in rapid characterization
of microbiome dynamics [12]. With advances in cytome-
try, the number of parameters that can be measured
simultaneously from single particles has increased multi-
fold; most notable of these advances are the addition of
more powerful lasers [13]. Over the last decade,
18-parameter measurements [14] have given way to
30-parameter flow cytometers [15], with 100-parameter
flow cytometry on the horizon [13]. High-throughput
data acquisition, minimum sample preparation, and
more parameters per cell, are now producing massive,
high-dimensional datasets. Classical approaches to com-
munity ecology studies will need to be augmented with
novel computational techniques to enable the analysis of
these huge multidimensional datasets [16].
Similar to our previous demonstration [17], there are

number of papers demonstrating the effectiveness of
flow cytometry in the characterization of microbial com-
munity changes [18–22]. However, there are very few
papers illustrating the possibility of the use of machine
learning models to classify microbial samples studied by
flow cytometry. A good overview of microbial flow cy-
tometry fingerprinting literature, which deals with the
extraction of variables based on flow cytometry data has
been presented previously [23]. Similar methods have
been proposed [24] and used [25] as data mining
methods, from which resulting variables can be

incorporated in machine learning models. Machine
learning approaches have been attempted previously at
the single-cell level for microbial flow cytometry data
[26–28]. While most of these demonstrations were based
on either staining microbial population of interest [29,
30] or attempting to analyze entire scatter pattern [26],
it was evident from our prior demonstration [17] that
with label-free flow cytometry parameters, it was pos-
sible to monitor and rapidly characterize the dynamics
of complex anaerobic microbiomes associated with per-
turbations in its environmental factors.
Hence, here we demonstrate the use of open-source

machine learning tools to analyze flow cytometry data
generated in the anaerobic microbiome perturbation ex-
periments exploiting the three-dimensional flow cytome-
try signals namely cell size (FSC or forward scatter), cell
granularity/morphology (SSC or side scatter) and auto-
fluorescence (corresponding to the same excitation/
emission wavelength as in AmCyan standard dye). We
also demonstrated for the first time, the use of unsuper-
vised autoencoders for microbial flow cytometry data.
Applications of the machine learning analysis of micro-
bial flow cytometry data in potentially improving the
performance of biodigesters, and to characterize the syn-
trophic resilience [31] of the microbial community struc-
ture when exposed to nanoparticles and antibiotics has
also been demonstrated. Perhaps in the future such tools
would enable futuristic endeavors such as waste treat-
ment in long-term human spaceflight missions [32–34]
or to transform human waste into food [35].

Results
Autoencoders as a powerful tool for anomaly detection in
microbiomes perturbed with controlled carbon sources
Figure 1 shows the results from the h2o.ai’s unsuper-
vised and non-linear autoencoder deep learning model.
Communities perturbed with the controlled addition of
GLUC and CELL looked different than the normal com-
munity and that with the controlled addition of other
carbon sources. Interestingly, day 2 corresponded to
peak biogas production for CELL at 272 mL while other
days were in the range of 25–40 mL as shown in the
Additional file 1: Figure S2. If this is compared with the
clubbed predictions (Additional file 1: Figure S3), puta-
tive hydrolyzers (HYDRO) (i.e. CELL) were misclassified
as putative acetogens (ACETO) which were same as
CELL - PROP clubbing observed previously [17] and
in the biogas plots (Additional file 1: Figure S2). Pu-
tative acidogens (ACIDO) (i.e. GLUC) and ACETO
(i.e. PROP and BUTY) were also predicted well.
These syntrophic acetogenic communities are believed
to be very important in maintaining stable and robust
anaerobic operation [36, 37].
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Putative functional group-level comparison with different
machine learning models
Table 1 lists prediction accuracies for the different
models in the h2o.ai’s supervised learning data science
algorithms suite. All models were evaluated on the test
set (25% of the dataset). The performance of the models
has been reported under tested conditions as described
in ‘Methods’ section (hyperparameter values in Add-
itional file 1: Section A2), and it can be optimized with
better parameter tuning. Gradient boosting (GB)

performed slightly better overall than deep learning (DL)
(feed forward artificial neural network with three hidden
layers) with 71.26% and 70.55% prediction accuracies re-
spectively under tested conditions. Both Naïve Bayes
(NB) and distributed random forests (DRF) had lower
overall prediction accuracies on test sets (60.44% and
53.55% respectively) under tested conditions. From the
area under the curve (AUC) plots shown in Fig. 2 and
reported values in Table 2, DL (feed forward artificial
neural network with three hidden layers) consistently

Fig. 1 Unsupervised autoencoder analysis can be used to identify significantly perturbed microbiomes. The mean squared error (MSE) between
actual value and reconstruction has been displayed on the y-axis for each sample tested. The red horizontal line at 0.05 MSE represents a
threshold error to decide an outlier

Table 1 Machine learning model comparison (values in the boxes are prediction accuracies on test data; higher values are better) (*

Demonstrated deep learning model was a feed forward artificial neural network with three hidden layers)

Putative Groups Gradient Boosting Naïve Bayes Distributed Random Forests Deep Learning*

Acetogens 41.87% 63.87% 18.00% 52.67%

Acidogens 91.20% 97.07% 53.07% 99.73%

Hydrolyzers 65.60% 67.20% 10.67% 57.07%

Methanogens 85.17% 44.75% 89.33% 76.83%

Overall 71.26% 60.44% 53.55% 70.55%
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outperformed all the other methods evaluated under
tested conditions and marginally better than GB for the
most important classes in anaerobic bioreactors (ACETO
and METHA) [38–40], indicating that a single feed for-
ward artificial neural network with three hidden layers
model could be tuned for this task. The results were in
concordance with similar supervised model comparison
studies where feedforward neural nets have been con-
cluded to perform best among various algorithms [41, 42].
The limitations of the DL (feed forward artificial neural

network with three hidden layers) in predicting methano-
gens (Table 1) were also evident in the clubbed prediction
as shown in the Additional file 1: Figure S2 where putative
methanogens (METHA) contradicted the expectations.
Additionally, to ensure that we are not overfitting our
models, we also trained them with 5-fold cross validation
(results in Additional file 1: Table S4). The accuracy scores

from this exercise followed similar trends, indicating that
our models were rather stable and not overfitted.

Predictive capabilities with deep learning (feed forward
artificial neural network with three hidden layers)
Since DL is increasingly popular because of its facility in
handling large amount of data [43], and since one of the
objectives of this paper is to illustrate the possibility of
classifying large flow cytometry data sets in the field of
anaerobic microbiology using machine learning for rou-
tine on-site microbiomes analysis, we examined its per-
formance in classifying ‘sample vs predicted’ carbon
sources. Figure 3 shows the results of the supervised DL
model (feed forward artificial neural network with three
hidden layers). In accordance with the results from clas-
sical multivariate analysis listed in our previous publica-
tion which showed that glucose (GLUC) looked very

a) b)

c) d)

Fig. 2 Receiver Operating Characteristic (ROC) curves comparing Gradient Boosting (GB), Naïve Bayes (NB), Distributed Random Forests (DRF) and
Deep Learning (DL) (feed forward artificial neural network with three hidden layers) models on classification of (a) Acetogens (ACETO) (b)
Acidogens (ACIDO) (c) Hydrolyzers (HYDRO) (d) Methanogens (METHA)

Table 2 Area under the curve (AUC) values corresponding to Receiver Operating Characteristics (ROC) curves shown in Fig. 2 for
test data (* Demonstrated deep learning model was a feed forward artificial neural network with three hidden layers)

Putative Groups Gradient Boosting Naïve Bayes Distributed Random Forests Deep Learning*

Acetogens 0.7829 0.7279 0.6482 0.7853

Acidogens 0.9993 0.9999 0.9833 0.9983

Hydrolyzers 0.9638 0.9391 0.8055 0.9269

Methanogens 0.8520 0.8024 0.7773 0.8585
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different from the rest [17], the classification probability
for GLUC was best amongst tested carbon sources,
followed by propionate (PROP) followed by sludge
(SLUD). The variable importance output from h20.ai’s
Flow platform reported in Additional file 1: Figure S7
shows that forward scatter (FSC) variables (<V1000)
stood out to be the most relevant in DL model (feed for-
ward artificial neural network with three hidden layers).
As demonstrated in the multivariate analysis on micro-
bial flow cytometry data in our previous publication
[17], GLUC showed a distinct pattern in reaching a
stable extremum in the colony structure, which was a
point corresponding to minimum change. Additionally,
both the peak and non-peak GLUC samples clustered
separately in the multidimensional spacing (MDS) plot
published previously [17], which was in accordance with
the results presented here from the DL model (feed for-
ward artificial neural network with three hidden layers).
Further, blank samples (NONE), acetate (ACET) and
sludge (SLUD) clustered separately in flow cytometry
MDS plot [17] which resembled to NONE, ACET and
SLUD misclassification evident in Fig. 3.

In the additional experimental set, when the cytomet-
ric fingerprints from individual carbon sources namely
glucose (GLUC), cellulose (CELL), propionate (PROP),
butyrate (BUTY), acetate (ACET) were trained with cy-
tometric fingerprints from all carbon sources combined
(WFED) and that from the starved community (STVD)
samples. The expectation was that well-fed (WFED)
community would display some degree of misclassifica-
tion towards one of the five carbon sources. However, to
our surprise, WFED community looked totally different
than the rest and was more like STVD than individual
carbon sources (confusion matrix in Additional file 1:
Table S3, associated plot in Additional file 1: Figure
S10). Furthermore, to evaluate the specificity of the
models, a completely new carbon source in the form of
newsprint waste (NEWS) was evaluated. Data from
NEWS samples were trained with the other individual
carbon sources data. Considering the primary compos-
ition of newspaper waste to be cellulosic fibers, the ex-
pectation was that it would display some similarity with
CELL. Once again to our surprise, NEWS community
looked totally different than rest of the carbon sources.

Fig. 3 Box plots of the deep learning (*feed forward artificial neural network with three hidden layers) classification probabilities for
carbon source

Dhoble et al. Journal of Biological Engineering  (2018) 12:19 Page 5 of 15



These results point towards the uniqueness of flow cy-
tometry signatures from complex carbon sources per-
turbed microbiomes in anaerobic digesters.

Applications in elucidating functionally redundant
microbiomes
To test the practical utility of the best performing DL
model (feed forward artificial neural network with three
hidden layers) beyond carbon sources, model implemen-
tation exercises were carried out with a separate set of
perturbations namely a) nanoparticles and b) antibiotics.
Interestingly even though the community looked quite
different from one another, none showed any toxic im-
pact on anaerobic digestion process observed in terms of
biogas production, methane composition, Total Chem-
ical Oxygen Demand (TCOD)/ Soluble Chemical Oxy-
gen Demand (SCOD) reduction and Volatile Fatty Acids
(VFA) accumulation (data not presented due to
non-significance) with respect to both positive and nega-
tive controls for the nanoparticles and antibiotic (tetra-
cycline) tested.

The deep learning (feed forward artificial neural net-
work with three hidden layers) analysis of flow cytome-
try data of nanoparticles perturbed community is shown
in the Fig. 4. As evident, each nanoparticle-perturbed
community looked different from one another and hence
got predicted very well. TIH and TIL which were titan-
ium (IV) oxide nanoparticles (TINPs) in high and low
concentrations respectively have shown a little deviation
and got misclassified as ferrous nanoparticles (FENPs)
community in a few instances. The positive control
(PCH) and negative control (NCH) got classified with
less prediction scores when trained with nanoparticles
than carbon sources. The community shifts in the con-
text of community morphology were severe under nano-
particles compared to carbon sources.
Unsupervised autoencoders were also found to be

marginally useful in predicting structural changes in the
antibiotic-perturbed community. As shown in Fig. 5, lit-
erature [44] reported toxic level for tetracycline (TC2)
and higher dosage (TC3) on day 50 got misclassified
than the rest. Furthermore, TC2 might have started dis-
playing maximum perturbation effects right from d 5 as

Fig. 4 Box plots of deep learning (*feed forward artificial neural network with three hidden layers) prediction probabilities for
nanoparticle-perturbed communities
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evident from the misclassification instance for TC2D05
in Fig. 5. Both biogas (Additional file 1: Figure S8) and
MDS (Additional file 1: Figure S9) plot on tetracycline
perturbed samples displayed differences in community
from day 0 and day 50. In the unsupervised autoencoder
analysis, the community perturbed with higher concen-
tration of TINPs on both the time points and higher
concentration of carbon nanotubes (CNTs) on earlier
time point looks different than the normal community
(Additional file 1: Figure S4).

Discussion
The machine learning approaches to the microbial flow
cytometry dataset are still in infancy but the results pre-
sented here from the analysis of 1,500,000 microbes corre-
sponding to each perturbation incidence (nanoparticles,
antibiotics and carbon sources) demonstrate that it has
much greater potential compared to the tradition micro-
bial ecology statistical analysis like MDS as demonstrated
in our previous publication [17] or similar Principal Com-
ponent Analysis (PCA). Furthermore, our demonstration
with five-fold cross validation assures the stability of vari-
ous machine learning models against potential biases.
With the advancement in the high-throughput nature of
flow cytometry, combined with the increasing capacity to
measure more cell parameters at once, massive and
high-dimensional datasets on a routine daily basis would
be generated in future and would add to the predictive
power of the machine learning based approach [28].

Even though dimensionality reduction was not an ob-
jective, autoencoders were found to be powerful in
learning a lower dimensional representation of the data.
We do not suggest it replace dimensionality reduction
analysis, nor do we intend it as a preprocessing step for
DL models. Our work using autoencoders suggests that
tools like the autoencoders can identify perturbations
and hence may be valuable in stochastic optimization of
the classical process design in the field of bioprocess en-
gineering. While the current paradigm of process design
is based on throughput rate, process yield and product
purity [45], with the novel combination of cytometric
fingerprinting and machine learning like the demon-
strated autoencoders, process engineers may be able to
optimize the digesters in real time, bypassing conven-
tional lab-pilot-operations route [46].
The motivation behind the model comparison exercise

was to see if one algorithm was better at predicting pu-
tative microbial group phenotypes than other. The effi-
ciency in terms of speed and resources for model
optimization, training and validation would be altogether
different track of inquiry and it was not used for com-
parison in the proposed approach. AUC measured the
probability that given two random points, one that is
positive and other negative for the class of interest, the
classifier scored the positive point higher than the nega-
tive one [47]. Considering the size and complexity of mi-
crobial flow cytometry data in anaerobic perturbations
experiments, AUC acted as a yardstick for comparing

Fig. 5 Unsupervised autoencoder analysis on antibiotics perturbed communities. The mean squared error (MSE) between actual value and reconstruction
has been displayed on the y-axis for each sample tested. The red horizontal line at 17.5 MSE represents a threshold error to decide an outlier
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the performance of the machine learning models used in
the present study. Discrepancies in the trends between
Tables 1 and 2 can be attributed to the fact that accur-
acies were computed at the set threshold values, while
AUCs were computed by adding all the accuracies com-
puted for all the possible threshold values. The ROCs in
Fig. 2 could be perceived as an average (expected value)
of those accuracies computed for all threshold values.
Under tested conditions, DRF worked better for puta-

tive methanogens, however the performance can be opti-
mized with better parameter tuning. DRF generated a
forest of classification (or regression) trees, rather than a
single classification (or regression) tree. Each of these
trees was a weak learner built on a subset of rows and
columns [48]. More trees would have reduced the vari-
ance [49]. Both classification and regression took the
average prediction over all their trees to make a final
prediction, whether predicting for a class or numeric
value [49]. Physiologically it may be too short of a time
to get distinguishing phenotypic signatures for DL algo-
rithm at the single cell level for methanogens [21, 50].
The stability of bioreactors is dependent on controlling
acid build up and acid removal [51]. With slightly better
AUC values for METHA and ACETO, DL seemed to
satisfactorily perform under tested conditions in detect-
ing perturbations in anaerobic bio-digesters. As demon-
strated in Additional file 1: Figure S7, FSC variables
(depicting size and morphology of individual cells) were
the most important variables and DL appeared to per-
form better under tested conditions at classifying cells
based on its size and morphological feature [19]. The
tunability of a single DL model for multiple putative
groups makes it computationally convenient for routine
on-site microbiomes analysis.
The substrate composition determines the microbial

community composition and organization [52, 53]. Indeed,
it not only defines reactor conditions [54], but also provides
the introduction of new species that are present in the sub-
strate matrix, as, for instance, is the case for manure and
waste activated sludge [55]. We were surprised that the
samples fed with all five carbon sources at once did not get
classified as one of the carbon sources. There might be a
physiological explanation for different than normal behav-
ior as reported by previous studies focused on studying
structure-function relationships of anaerobic microbiomes
[56–59]. Smithllela, Syntrophobacter, and Pelotomaculum
might have the ability to break down CELL faster than clas-
sical hydrolyzers like Clostridium or have greater doubling
time [60]. PROP species predominantly fall in the genera
Smithllela, Syntrophobacter, and Pelotomaculum [61, 62]
while BUTY species in the genera Syntrophus and Syntro-
phomonas [63]. There have been reported phenotypic/
physiological similarities between species of these two gen-
era that may explain this trend [64, 65].

The composition of newspaper is reported as cellulose
(glucose polymer), wood fiber (with 65.8% glucose,
19.8% xylose, 12.5% galactose and 1.3% mannose) [66].
The newspaper waste (NEWS) was a different type of
carbon source compared to the earlier experiments with
lab grade carbon sources. We were surprised that NEWS
did not get misclassified as either CELL or GLUC but
was distinctly predictable. It is possible that distinct
groups of hydrolyzers and acidogens might be involved
in initial degradation of newsprints than those feeding
on pure cellulose or glucose [66, 67]. The accurate clas-
sification of various group of putative hydrolyzers and
acidogens might become valuable in the routine moni-
toring of the anaerobic digesters in near future [68].
Even though the present results and the current asso-

ciated literature [69] suggests no quantifiable toxicity of
some nanoparticles on anaerobic digestion, the effect of
NP-solvents was sometimes more significant than that
of the NPs themselves - a point that may be of special
interest for future nanotoxicological studies. The ab-
sence of observable toxicity from the exposure to tetra-
cycline in terms of physico-chemical performance of the
anaerobic culture was surprising. Both the nanotoxicity
and antibiotics perturbation experiments were designed
considering the current environmentally relevant con-
centrations [69]. With nanoparticles finding wider appli-
cation in industrial products, such as antibacterial
coatings, catalysts, biomedicine, skin creams and tooth-
pastes, the magnitude of environmentally relevant con-
centrations may change in the future. Similarly,
antibiotics can create perturbations and change the dy-
namics of the complex anaerobic microbial community.
The present exercise demonstrates that flow cytometry
can be used to monitor shifts away from normal micro-
bial patterns. Our results suggest that even though the
physiochemical parameters are not detectably different,
changes in the community structure may be indicative
of a community that may eventually break down.

Conclusion
Autoencoders were found to be powerful in detecting
anomalies in flow cytometry data from nanoparticle-
and carbon source-perturbed anaerobic microbiomes
but marginally so for antibiotic-perturbed communities.
Anaerobic microbiomes displayed functional redundancy
under nanotoxicity and antibiotic perturbations. Predict-
ive classification patterns with supervised feed forward
artificial neural network with three hidden layers were
found to be robust. Model comparison exercise based on
predictive capabilities concluded that under tested con-
ditions, gradient boosting (GB) and deep learning (DL)
(feed forward artificial neural network with three hidden
layers) were marginally better at predicting overall com-
munity structure while distributed random forests (DRF)
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worked better at predicting methanogens, and it can be
optimized with better parameter tuning. Flow cytometry
data generated in various anaerobic microbiome per-
turbation experiments could be analyzed by various ma-
chine learning approaches for actionable insights.

Methods
Experimental set-up
The source of anaerobic culture, controlled perturba-
tions and flow cytometric analysis were same as de-
scribed in previously [17]. In summary, each of 100 ml
of the triplicate mesophilic anaerobic microbiome batch
assays were perturbed with different carbon sources sep-
arately (part of the dataset published previously [17])
and combined (new experiments). In addition, separate
controlled perturbations were carried out in each of
100 ml of the triplicate mesophilic anaerobic micro-
biome batch assays with different nanoparticles, tetra-
cycline antibiotics and newsprint waste.

Carbon sources
Individual carbon sources with 2000 mg/L chemical oxy-
gen demand (COD) of glucose (GLUC), cellulose
(CELL), propionate (PROP), butyrate (BUTY), acetate
(ACET) separately as well as five of them combined
(WFED) were added to individual batch assays. The
chemical properties of the sludge (SLUD) used in this
research are summarized in Additional file 1: Table S1.
The peak day samples corresponded to the maximum
biogas production observed (Additional file 1: Figure
S2). Samples with no additional carbon sources were
represented as NONE or starved (STVD). The experi-
mental design has been shown in the Additional file 1:
Figure S1. The data with individual carbon sources has
been published previously [17]. The data with the com-
bined five carbon sources as well as nanoparticles, tetra-
cycline antibiotics and newsprint waste were from the
separate unpublished experiments.

Conceptual division of putative microbial group(s)
For the clubbed flow frame analysis, the sample names
were clubbed as per the conceptual division of putative
microbial groups in anaerobic digestion process. The
four groups were: (1) Putative hydrolyzes represented by
“HYDRO” which were samples fed with cellulose (CELL)
(2) Putative acidogens represented by “ACIDO” which
were samples fed with glucose (GLUC) (3) Putative syn-
trophic acetogens represented by “ACETO” which were
clubbed samples fed with propionate (PROP) and butyr-
ate (BUTY) individually (4) Putative methanogens repre-
sented by “METHA” which were clubbed samples fed
with acetate (ACET), sludge (SLUD) individually as well
as those fed with no carbon source (BLAN and NONE).
The reason behind clubbing ACET, SLUD, BLAN and

NONE into METHA putative group was because all
these samples were supposedly methanogenic samples
with acetate utilizing methanogens were the predomin-
ant group in the waste water treatment plant anaerobic
digesters [70].

Newsprint wastes
The feedstock used for the lab tests for the proposed
campus anaerobic digester was newsprint from day-old
Daily Illini Newspaper obtained from the waste sorting
facility. Newsprint samples were either ground to pow-
der, shredded to strips in an office paper shredder or
whole pieces hand cut to size for required weight in each
experiment. The goal was to predict the newspaper cyto-
metric fingerprints (abbreviated as NEWS) off the car-
bon sources dataset generated with the proposed flow
cytometry methodology.

Nanoparticles
For the nanotoxicity experiments, the sludge samples
(SLUD) were mixed with various nanoparticles in low
(L) 1 mg/g-TS (total solids) and high (H) 10 mg/g-TS
concentrations. Plain sludge with anaerobic inoculum
from active anaerobic digesters but no nanoparticles
added was set up as a positive control (PCH) and anaer-
obic inoculum from the active anaerobic digesters with-
out sludge or nanoparticles was set up as a negative
control (NCL). The alleged toxic impact of nanoparticles
on anaerobic digestion process was quantified by moni-
toring the biogas production daily along with gas com-
position, TCOD/ SCOD reduction and VFA production
on biweekly basis. Drawing the samples for flow cyto-
metric analysis every week helped build the cytometric
fingerprints of the perturbed community, which forms
the basis for subsequent machine learning analysis.
TINPs are titanium (IV) oxide, anatase nanopowder, <
25 nm particle size, 99.7% trace metals basis, specific
surface area 45–55 m2/g obtained from Sigma Aldrich
(Catalog # 1317-70-0). FENPs are iron nanopowder,
25 nm average particle size, 99.5% trace metals basis
from Sigma Aldrich (Catalog # 7439-89-6). CNTs are
multi-walled carbon nanotube which are reported thin
and short, < 5% metal oxide powder also from Sigma Al-
drich (Catalog # 308068–56-6).

Antibiotics
For the antibiotics perturbation experiments, the sludge
samples (SLUD) were mixed with tetracycline (Empirical
Formula - Hill Notation: C22H24N2O8·xH2O, Molecu-
lar Weight: 444.43 anhydrous basis) obtained from
Sigma Aldrich (CAS Number: 60–54-8). Tetracycline
was reported to be profound inhibitors of anaerobic di-
gestion, inhibiting methane production by up to 50%
with a concentration of 40 mg/L [44]. Hence, to generate
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varying datasets for machine learning analysis of micro-
bial samples, tetracycline with 20 mg/L (TC1), 40 mg/L
(TC2) and 80 mg/L (TC3) concentrations were used
along with positive (TC4) and negative (TC5) controls as
described in the previous section.

Flow cytometry analysis
Samples of the anaerobic microbial communities were
collected from each serum bottle via a syringe with a 18
gauge needle (every 24 h following a biogas measure-
ment for carbon sources). Initial sample (NONE_0) was
the same for all the assays, which was the fresh inocu-
lum. 750 μL of sample from each serum bottle was
strained prior to flow cytometry using BD Falcon 12 × 75
mm Tube with Cell Strainer Cap having a 35 μm nylon
mesh (Catalog No. 352235). The strained samples were
suspended in Phosphate-buffered saline (PBS)-1X. Ana-
lyses were performed immediately on a Bio-sciences LSR
II Flow Cytometry Analyzer. The excitation laser was
tuned for 405-nm. Autofluorescence was measured as
light passing a 450/50 photomultiplying tubes (PMT)
and band pass filter with no long pass dichroic mirror.
Signals were amplified with a 4-decade log amplifier and
collected at a rate of approximately 1000 events per sec-
ond. The fixed gating template as shown in the Add-
itional file 1: Figure S6 (a) was used based on the control
beads run (Additional file 1: Figure S6 (b)). Background
events corresponding to dead/junk cells along with high
FSC events (putative doublets) were excluded from the
analysis (Additional file 1: Figure S6 (c)). Total 100,000
events collected for each sample were stored in corre-
sponding Flow Cytometry Standard (fcs) files.

Training and test dataset creation
For the machine learning based analysis, the fcs files ob-
tained from a BD Bioscience LSR II Flow Cytometry
Analyzer were imported. Each file comprised of 100,000
events representing 100,000 cells. The fcs file contained
values for multiple parameters for each cell. But for our
analysis we only chose “FSC-A”, “SSC-A” and
“AmCyan-A” because in our previous publication [17],
FSC or forward scatter, SSC or side scatter representing
cell size, granularity/morphology respectively and auto-
fluorescence (corresponding to the same excitation/
emission wavelength as in AmCyan standard dye) were
found to have maximum information. So, from each fcs
file we get a matrix of 100,000 events with 3 columns
(“FSC-A”, “SSC-A” and “AmCyan-A”) each.
Classifying single cells (also known as ‘events’) was out

of purview of present study. Rather, we were interested in
classifying distributions of events to understand microbial
community dynamics specific to each perturbation. Our
data was normally distributed in the measured flow cy-
tometry values, hence we decided to combine 1000 events

into a data point or a vector of 3000 values (1000 events
comprising of 3 values corresponding to “FSC-A”,
“SSC-A” and “AmCyan-A”) because the Wald Type confi-
dence interval [71] with 3% error required a sample size of
1000. Additionally, the distribution of “FSC-A”, “SSC-A”
and “AmCyan-A” values for all methanogens groups in
the test set (described below) as well as the distribution of
the same values in one randomly chosen vector of 1000
events has been presented in Additional file 1: Section
A.3. Upon visual inspection, it is evident that the vector of
1000 events was able to capture the complexity and dis-
criminative information of single cell variability in the
population. There have been various workflows proposed
for the data processing, feature extraction and data ana-
lysis of cytometric fingerprints applying Dalmatian Plot,
CHIC, CyBar, or FlowFP [23], however majority of these
were tested on the 2-dimenstional cytometric fingerprints,
staining with one or more dyes. Previously, we have dem-
onstrated correlation between prevalent community fin-
gerprinting techniques like automated ribosomal
intergenic spacer analysis (ARISA) and label-free, raw
3-dimensional cytometric fingerprints based on “FSC-A”,
“SSC-A” and “AmCyan-A” [17]. The focus of this paper is
to demonstrate the fruitfulness of machine learning algo-
rithms in analyzing such label-free, raw 3-dimensional cy-
tometric fingerprints. The presented framework could
also potentially be applied to other approaches like Dal-
matian Plot, CHIC, CyBar, or FlowFP from the flow cy-
tometry fingerprinting literature to extract
distribution-level features and/or with distribution level
statistics such as the mean, standard deviation, percentile
values etc.
Since there were 100,000 events in each fcs file, we got

100 such vectors. As described, we conducted each experi-
ments in triplicate ranged over five time points, we had
1,500,000 (300,000 × 5) events for each perturbation inci-
dence (carbon sources, nanoparticles, antibiotics) thereby
generating a rich dataset with 1500 vectors representing
each label. This dataset was then split into 75% training
(1125 vectors) and 25% test (375 vectors) sets for each label.
We decided to create a larger training split compared to
testing since it is customary practice in machine learning
community [72]. Additionally, we performed grid search
(hyperparameters are reported in Additional file 1: Section
A2) with nested cross-validation (four-folds outer and
three-folds inner) on the training set (75% of dataset) to
tune the hyperparameters [73]. The outer-fold creates
non-overlapping datasets to evaluate the results of the
inner-fold grid search cross validation. The best hyperpara-
meters were selected based on the accuracy scores and
standard deviation on the non-overlapping datasets in
the outer-fold. The best hyperparameters from nested
cross-validation were evaluated on the test set (25%
of dataset).
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An h2o.ai server was set-up as per instructions [74]
(http://www.h2o.ai/) and the data was uploaded in indi-
vidual comma-separated values (CSV) files. The fcs files
and associated code are available at: https://github.com/
adhoble/CFML-Perturb. The fcs files were also submit-
ted to the Flow Repository (https://flowrepository.org/).
(Repository ID: FR-FCM-ZYK4).

Explanation of machine learning models
Autoencoders
An autoencoder learns a lower dimensional representa-
tion of the data by trying to learn an approximation of
the identity function [75]. It is a feed-forward neural net-
work where the hidden layer(s) compress(es) the input
data and the output layer attempts to reconstitute the
input data from the compressed encoding. This com-
pressed encoding is the representation of the input data.
This method can be used for anomaly detection such as
email spams or financial frauds using the reconstruction
mean squared error (MSE) on new data [75]. The MSE
is defined by L (x, x’) = || x -x’||2 where x is the input
vector (true value) and x’ is the vector reconstructed by
the autoencoder (estimated/predicted value). Higher the
MSE value, more anomalous a sample in relation to the
pattern found in a whole dataset and the threshold MSE
would vary with the particular perturbation experiment
under consideration.
In our implementation of autoencoders, the h2o.ai

function ‘deeplearning’ was used with ‘autoencoder’ op-
tion turned on and one hidden layer of 2000 nodes.

Deep learning (feed forward artificial neural network with
three hidden layers) (DL)
A feed forward artificial neural network model or a deep
neural network model is an arrangement of layers of
neurons (inspired by biological neurons in human brain)
with weighted connections such that there are no loops
[76]. These neurons have activation thresholds which, if
exceeded by a linear combination of the weight associ-
ated with incoming connections and data passed to
them, are fired. During training, this model learns the
weights of the connections to approximate any general
target function.
In our implementation of deep learning (feed forward

artificial neural network with three hidden layers), the
default rectifier with dropout was selected for activation.
The network contained input dropout ratio of 0.1,
hidden dropout ratios of 0.2, 0.2, 0.1 and a default
hidden layer sizes 2000,1000,500 were used. Number
of epochs (i.e. number of times to iterate the dataset)
were selected to 10. To add stability and improve
generalization, either L1 or L2 regularization was used
with the value of 1e-5 each.

Distributed random forests (DRF)
Random forests are type of ensemble machine learning
methods commonly used for classification and regres-
sion. They extend decision trees by training many trees
on random subsets of training data sampled with re-
placement [77]. Additionally, during the training of each
tree, each split in the tree is generated from a random
subset of the features. After training, test data predic-
tions are generated by averaging the predictions from all
the trees trained. These two extensions decrease the
variance in the model to reduce the problem with over-
fitting in decision trees at the expense of slight increase
in the bias [77].
In our implementation of distributed random forests,

for each classification task, the h2o.ai function ‘random-
Forest’ was used with 200 trees, maximum depth of 20
levels and respective training and validation data for the
task. The other parameters were set to their default
values.

Gradient boosting (GB)
Gradient boosting machine is an ensemble method
based on the idea that multiple weak learners can per-
form better than a single strong learner [78]. In the case
of gradient boosting machines, the weak learners are
short regression trees. At each iteration, a new tree is
added that minimizes the loss function while keeping
the other trees frozen. Additionally, at each iteration the
loss function is modified such that training data points
that were previously misclassified are weighted strongly.
These methods are generally used as algorithms to rank
a list such as in web search. This method is less suscep-
tible to overfitting and does not suffer from the curse of
dimensionality, however it is sensitive to noisy data and
outliers [79].
In our implementation of gradient boosting, for each

classification task, the h2o.ai function ‘gbm’ was used
with 200 trees and maximum depth of 5 levels as per
recommended range of 4 to 8 levels [80] wherein results
were found insensitive to values chosen in this range.

Naïve Bayes (NB)
Naïve Bayes is a supervised classification method that
constructs conditional probability distributions, p (Ck |
X1,….,Xn), for each category Ck, where X1,….,Xn are the
features used in training [81]. When new data is pre-
sented to the model, each category with the highest
probability is assigned to the data point corresponding
to unique features. It is a common baseline method for
tasks such as text categorization, for identifying spams
as well as in automatic medical diagnostics. This method
makes a naïve assumption of independence of the fea-
tures which may or may not be accurate given the na-
ture of the data or process being modelled. However,
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these assumptions help it avoid the curse of dimensionality
wherein an exponentially increasing amount of data is re-
quired with increasing features. In fact, the joint conditional
probability distribution of the features can be calculated
from the individual conditional feature distributions [81] .
In our implementation of Naïve Bayes, for each classi-

fication task, the h2o.ai function ‘naiveBayes’ was used
with the default parameters and respective training and
validation data for the task.

Variable importance
To examine which of the measured flow cytometry fea-
tures were most important in the deep learning (feed for-
ward artificial neural network with three hidden layers)
analysis, the variable importance option was turned and
visualized in h2o.ai’s Flow platform. Variable importance
is notoriously difficult to compute for deep learning (feed
forward artificial neural network with three hidden layers).
The implemented method by Gedeon [82] considers the
weights connecting the input features to the first two hid-
den layers. Our analysis was based on three flow cytome-
try features namely “FSC-A”, “SSC-A” and “AmCyan-A”
corresponding to V1-V1000, V1001–2000 and V2001–
3000 variables respectively in h2o Flow.

Receiver operating characteristic (ROC) curves
Area under the curve (AUC) analysis was performed for
the clubbed data set on its test set split to test for ro-
bustness of the models. Since the models were multi
class classification models, AUC values and receiver op-
erating characteristic (ROC) curves were calculated by
dividing the four-class prediction problem into four
one-vs-all binary classification problems using the pROC
package in R [83].

Additional file

Additional file 1: Experimental design, flow cytometry controls,
hyperparameters and additional material. (DOCX 984 kb)
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Hydrolyzers; MDS: Multidimensional Scaling; METHA: Putative Methanogens;
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