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Abstract

Capillaries within the microcirculation are essential for oxygen delivery and nutrient/waste exchange, among other
critical functions. Microvascular bioengineering approaches have sought to recapitulate many key features of these
capillary networks, with an increasing appreciation for the necessity of incorporating vascular pericytes. Here, we
briefly review established and more recent insights into important aspects of pericyte identification and function
within the microvasculature. We then consider the importance of including vascular pericytes in various
bioengineered microvessel platforms including 3D culturing and microfluidic systems. We also discuss how vascular
pericytes are a vital component in the construction of computational models that simulate microcirculation
phenomena including angiogenesis, microvascular biomechanics, and kinetics of exchange across the vessel wall. In
reviewing these topics, we highlight the notion that incorporating pericytes into microvascular bioengineering
applications will increase their utility and accelerate the translation of basic discoveries to clinical solutions for
vascular-related pathologies.
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Background
Oxygen, nutrients, and immune cells are among the
many critical elements contained in blood that circu-
lates throughout the human vascular system [1]. The
interconnected blood vessels comprising this system
are therefore essential for sustaining the health and
homeostasis of the tissues and organs in which they
reside [2]. Arteries carrying oxygenated blood from
the heart ramify into smaller diameter arterioles. Vas-
cular smooth muscle cells (vSMCs) wrap around
these vessels to distribute blood into even smaller
diameter capillaries where oxygen diffusion and nutri-
ent delivery primarily occur [3]. These intricate
microvascular networks also facilitate the removal of
carbon dioxide and cellular waste from all tissues.
These and other byproducts are returned into the sys-
temic circulation for clearance via small-diameter ve-
nules that converge into larger veins. Because
microvessels (i.e. blood vessels with a diameter of less

than 10 μm) are such a vital component of the vascu-
lar system [4], significant effort has been made to en-
gineer various platforms to better understand the
biology of the microcirculation as well as to develop
clinically relevant, vascular-focused therapies.
The field of vascular bioengineering includes a focus on

microvessels and generating functional capillary networks
[5, 6] but also encompasses advancing biotechnologies to
synthesize larger diameter vessels for bypass grafts [7, 8],
for example. Thus, to delineate the scope of this review,
we will focus on “microvascular bioengineering”, that is,
the biology and technological developments relevant to
capillary-sized vessels. As discussed above, the microcircu-
lation is fundamental to the metabolic exchange that sus-
tains every tissue of the human body. Microvessels also
regulate the movement of fluid and other solutes across
the blood vessel wall [9–14]. The endothelial cells that
compose the inner surface of all blood vessels are integral
in maintaining this barrier function. Endothelial cells form
a selective barrier by assembling various types of junctions
amongst themselves including adherins junctions via vas-
cular endothelial-cadherin (VE-Cadherin, or Cadherin5)
[15–18] and, highly enriched in neural tissues, tight junc-
tions using zona occludins-1 (ZO-1), claudin5, and/or
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occludin [11]. Microvascular bioengineering approaches
often focus on the formation of these junctions as an im-
portant read-out for the success of a particular platform.
Equally as important for promoting microvessel barrier
function are vascular pericytes [11, 12, 19–21], a cell type
that remains poorly understood relative to endothelial
cells and is only beginning to be considered in micro-
vascular bioengineering applications.

Pericyte identity
Pericytes extend along nearly every capillary within the
human body, making direct contact with the underlying
endothelium and embedded within the vascular base-
ment membrane (vBM). Rouget and Eberth are credited
with first distinguishing these cells from vSMCs by not-
ing their unique appearance [22–24]. Specifically, peri-
cytes were identified in perivascular locations but
elongated along capillaries, at microvessel branch points
and along microvascular segments resembling “bump-
s-on-a-log” [25] (Fig. 1). Scanning electron microscopy
further confirmed their formation of “peg-and-socket”
junctions with endothelial cells, and their presence
within the vBM, a specialized extracellular matrix
(ECM) that surrounds the vascular unit. Vascular peri-
cytes likely arise during embryonic development from
unique cellular niches that depend on the specific tissue
and organ. Nonetheless, neural crest and primordial
mesenchyme are frequently noted as giving rise to peri-
cytes [20, 26–28], with hematopoietic origins also being
described (though these may be present primarily during
angiogenesis and less so during vessel maturation) [29].
Pericytes depend heavily on platelet-derived growth
factor-BB (PDGF-BB) signaling for their recruitment and
retention along vessels [30–36]. They highly express
PDGF Receptor-β (PDGFRβ), which is a useful cell sur-
face marker for identifying pericytes on capillary
branches within many tissues, though interpretation of
this signal must also include a consideration that vSMCs
and certain brain glia also express PDGFRβ [33, 37, 38].
Neural glial antigen-2 (NG2, gene name: chondroitin sul-
fate proteoglycan-4, Cspg4) is also a helpful marker for
pericytes, though oligodendrocyte precursor cells
(OPCs) in the brain also express NG2/Cspg4 [39–41].
Because of this overlap in marker expression, no single
marker, or even combination of markers, can be used to
specifically identify pericytes. Next-generation sequen-
cing and single-cell profiling techniques will likely yield
a more specific marker for pericytes [42–48], but coup-
ling marker expression with morphological features cur-
rently offers a high degree of confidence in identifying
microvascular pericytes [49].
As criteria for bona fide pericytes continue to

strengthen [50], it is becoming possible to identify peri-
cyte subtypes that correspond to their locations within

a microvascular network. Grant et al. for example re-
cently conducted a thorough analysis of microvessels in
the mouse brain using two-photon and confocal im-
aging in conjunction with tissue clearing techniques

Fig. 1 Simplified schematic of pericytes within the microcirculation.
During angiogenic remodeling of microvessels, pericytes migrate along
endothelial “tip” cells and secrete extracellular matrix components into the
vascular basement membrane. Pericytes establish non-overlapping spatial
domains, and a subset of pericytes may modulate microvessel diameter.
Pericytes closer to terminal arterioles may wrap around and ensheath
vessels, though these cells are likely distinct from vascular smooth
muscle cells
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[51]. The authors were able to classify pericytes into
three unique categories: 1- ensheathing pericytes (on
pre-capillary arterioles), 2- mesh pericytes [on capillar-
ies just downstream of ensheathing pericytes containing
α-smooth muscle actin (αSMA)], and 3- thin-strand
pericytes (on capillaries immediately adjacent to mesh
pericytes) (Fig. 1). Even within these subpopulations,
pericytes appear to maintain non-overlapping spatial
domains along the microvasculature. These potential
distinctions between pericyte subtypes suggest that
each subpopulation may play diverse roles within the
microcirculation in addition to a subset of common
functions [51–54]. Additional studies will be necessary
to determine if functional differences do indeed exist
among pericyte subtypes, as well as if these pericyte
subpopulations are present in other tissues and organs
beyond the brain [42]. Complementary imaging ap-
proaches will also be useful in characterizing potential
pericyte subtypes. Imaging modalities such as
super-resolution microscopy, scanning electron micros-
copy (SEM) [55], and serial block face-SEM [56] can
capture ultra-structural details that are likely beyond
the resolution of optical microscopes but could be im-
portant in understanding the configuration of these
pericyte subtypes.
Continued advancement of pericyte-specific tools and

markers alongside next-generation imaging and sequen-
cing modalities will not only illuminate distinctions be-
tween pericyte subtypes, but will also offer more insight
into how pericytes differ from other cell types the reside
in perivascular locations. For instance, gross pericyte
morphology is well known to contrast with that of vSMCs,
which concentrically wrap around endothelial cells in a
configuration consistent with their primary role in regulat-
ing vascular tone. In spite of these and other distinctions,
pericytes have often been grouped together with vSMCs
and labeled as “mural cells” [57–59]. Pericytes may indeed
give rise to vSMCs as seen in the development of mouse
coronary arteries [60]. Distinct molecular signals such as
those from the Notch pathway coordinate this
pericyte-to-vSMC transition, but these cues do not appear
to be required for pericyte differentiation, recruitment, or
retention within the microcirculation [37, 61–64]. Peri-
cytes have also been associated with and classified as
“perivascular fibroblasts” [58], despite the fact that fibro-
blasts are rarely, if ever, embedded within the vBM as peri-
cytes are. Additionally, pericytes have been described as
perivascular mesenchymal stem cells (MSCs) capable of
trans-differentiation and tissue regeneration [53, 65–70],
though this identity may be context- and/or
model-dependent [67, 71–80]. Therefore, as progress con-
tinues in developing markers and tools to identify peri-
cytes and distinguish them from other cell types,
microvascular bioengineering approaches will be able to

incorporate these essential cells to enhance our under-
standing of the microcirculation and to generate clinically
relevant, microvessel-focused therapies.

Pericyte function
Pericytes play a variety of important roles in the devel-
opment, maturation, and functionality of microvascular
networks. During the growth of new blood vessel from
pre-existing vessels, a process known as angiogenesis,
pericytes dynamically interact with endothelial “tip” cells
that sprout to form new branches [81–86]. We are just
beginning to understand pericyte-endothelial cell cross-
talk during sprouting angiogenesis, but what is clear is
that pericytes modulate the stability of newly formed
microvessel branches [87] and structurally maintain ca-
pillary diameter within an appropriate range [88, 89]
(Fig. 1). Pericytes also promote and sustain the integrity
of the microvessel wall by stimulating endothelial cell
junction formation [12–14], as discussed above. In the
brain, pericytes appear to provide a level of regulation
for the movement of solutes across the vessel wall
through transcytosis and vesicular transport [12]. Peri-
cytes also regulate the composition of the blood vessel
wall by synthesizing and depositing specific elements
within the vBM [20, 88, 90, 91]. Fibronectin, vitronectin,
laminins, and Type IV collagen (Col-IV) are among the
extracellular matrix (ECM) components that pericytes
secrete into the microvessel wall [43, 92] (Fig. 1). In
addition to structural regulation of the capillary wall,
pericytes have been implicated in dynamic modulation
of microvessel tone and diameter, particularly in the cen-
tral nervous system (CNS) [26, 93–101]. Although peri-
cyte contractility remains an open question [94, 102],
recent observations of calcium fluctuations in brain peri-
cytes suggests that they participate at some level in
mechanisms coordinating blood flow regulation with
region-specific metabolic demand [52]. These diverse
roles for pericytes within the microcirculation under-
score their importance in maintaining tissue health by
promoting and sustaining microvessel stability, barrier
function, and perfusion.
Beyond their contribution to vascular-specific func-

tions, pericytes have been implicated in other biological
processes, both physiological and pathological. For in-
stance, pericytes have been described as MSCs occupy-
ing perivascular locations, suggesting that a subset of
vascular pericytes may actually be capable of tissue re-
generation [53, 54, 66–68]. A recent study by Guimar-
ães-Camboa and colleagues suggests that we may need
to reconsider this role in vivo however, as they found
pericytes derived from multiple organs demonstrated
lineage plasticity (i.e. pluripotency as MSCs) only when
cultured in vitro [80]. Pericyte contributions to certain
disease processes have also been reported. In
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proliferative diabetic retinopathy, “pericyte dropout”
(and thus destabilization of the retina capillary wall) is
thought to be a key step in the progression of this dis-
order [103–105]. This loss of pericytes may occur
through apoptosis and cell death [106], but may also re-
sult from pericyte detachment and emigration away
from the microvessel wall [107, 108]. This mode of peri-
cyte loss has been implicated in other disease conditions
as well, notably idiopathic pulmonary fibrosis (IPL) [108]
and kidney fibrosis [109, 110], among others. In patholo-
gies of fibrosis, pericytes have been identified as major
producers of ECM components that exacerbate the fi-
brotic content of affected tissues and organs [65, 108–
112]. An emerging role for pericytes in certain patho-
logical states is their aberrant progression towards a
more highly contractile phenotype, as suggested by a
notable increase in expression of vasomotor proteins
such as αSMA (i.e. hyper-muscularization). In a model
of defective col-IV synthesis, for example, pericytes have
been shown to acquire higher levels of αSMA [113, 114],
as we have also seen in a model of perturbed oxygen
sensing [i.e. via mutations in the von Hippel-Lindau
(VHL) gene] [115]. Pathological pericyte vasocontracti-
lity may adversely affect blood flow within the microcir-
culation [93, 94, 96, 116] and undermine pressure
regulation, which could in turn increase the risk for ves-
sel rupture. Further investigation will be needed to
understand the underlying mechanisms that may aber-
rantly drive pericytes towards a contractile phenotype.
New insights into pericyte biology have emerged with

the recent flourish of interest regarding pericyte identity,
differentiation, and function within the microcirculation.
More detailed understanding of established functions as
well as novel roles are still being elucidated, inspiring
many thoughtful and comprehensive reviews [14, 19, 20,
25, 117–120]. Indeed, a wide range of intriguing
pericyte-focused studies have recently been contributed
to the scientific literature; space limitations however pre-
vent an exhaustive review of all of these interesting dis-
coveries. Nevertheless, in this review, we focus on the
importance of incorporating pericytes into engineered
microvascular constructs across a variety of platforms.
We give specific consideration to incorporating pericytes
(i) into bioengineered vessels for exploratory purposes
and for potential therapeutic applications, and (ii) into
computational models of vascular-specific processes.

Incorporating Pericytes into bioengineered
microvessels
The most simplified models of the blood vasculature are
often endothelial cell-based, mostly in 2D on cell culture
plastic and under static conditions. Human umbilical
vein endothelial cells (HUVECs) have served as a pre-
dominant source for the cell line utilized, though

additional sources have been developed including micro-
vascular endothelial cells. Embryonic stem cells (ESCs)
[121–124] as well as induced pluripotent stem cells
(iPSCs) [125] have also been used to generate endothe-
lial cells. These basic 2D models were further developed
in unique ways to address specific research questions.
Endothelial cells and differentiated ESCs and iPSCs have
been embedded in 3D matrixes such as Type I Collagen
(Col-I) [126, 127] or fibrinogen [128, 129] to investigate
vascular remodeling processes such as sprouting angio-
genesis and vessel lumen formation [130]. In 2D plat-
forms, endothelial cells have also been subjected to fluid
movement and shear stress by a variety of methods [8,
131–135]. These studies in particular ushered in tremen-
dous insight into the coupling between fluid mechanics
and endothelial cell biology, including concepts such as
endothelial mechano-transduction [136]. Fluidics plat-
forms recapitulating fluid flow across cells in initial con-
figurations were likely more comparable to scenarios of
larger diameter vessels. Capillary-like fluidic systems
however were relatively limited until the advent of
microfluidics technology.
For the models aiming to mimic the microvasculature,

incorporation of pericytes represents a logical next step
in building complexity and moving closer to modeling in
vivo microvessels. Several challenges exist in establishing
standard methods to isolate and culture purified peri-
cytes for in vitro use. Because pericyte markers overlap
with other cell types, selecting pericyte populations via
marker expression (i.e. for magnetic- or fluorescent
reporter-based sorting) can yield isolates that are
enriched but not necessarily pure. The same obstacles
limit validation approaches using certain markers in ex-
pression analysis by qRT-PCR and Western Blot, though
combinatorial approaches can be useful. An additional
challenge in validating pericyte identity in vitro is that
their cell fate plasticity may depend heavily on culture
conditions [80]. Given that pericyte functions are tightly
coupled to endothelial cell activities such as barrier func-
tion as well as angiogenic sprouting and remodeling [50,
137], validation strategies that rigorously test for these
key features of microvascular pericyte identity, even ap-
plied to commercially available cell lines, will bolster
confidence in techniques used for their isolation and
culture. Similar strategies may also need to be developed
for exploring the potential stem cell properties of peri-
cytes, which may exhibit broad plasticity after dissoci-
ation from the vessel wall.
Pericyte-endothelial cell co-culture models provide

insight into how certain experimental perturbations
might affect each cell type directly and perhaps indir-
ectly [57]. Similarly, 3D co-culture [84, 88] or stem
cell-based [126, 127, 138] models of vascular remodeling
and sprouting angiogenesis capture the unique
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contributions of both cell types to these processes.
Vessel-like structures form within these 3D in vitro
models via coalescence of cells into basic vascular net-
works (i.e. resembling in vivo vasculogenesis such as in
the yolk sac [139, 140]). Primitive vasculature in these
models can also arise through subsequent endothelial
cell sprouting and angiogenic remodeling as observed in
vivo in tissues such as the developing mouse retina [115,
141]. Although these 3D in vitro models cannot recap-
itulate all aspects of the corresponding in vivo scenarios
such as including blood flow, oxygen gradients, and the
full range of relevant cell types, coupling these models
with synthetic or naturally occurring ECM scaffolds
[142–144] may also shed light on disease-related phe-
nomena. Pericyte migration away from vessels, as seen
in diabetic retinopathy and IPL discussed above, has
been successfully modeled with such systems [108].
Incorporating pericytes into vascular fluid mechanics

models has been uniquely challenging. A distinct spatial
configuration is required for such a platform, that is, po-
sitioning endothelial cells only on the “luminal” side
while not exposing pericytes to fluid flow on the “ablum-
inal” side. Thus, microfluidic approaches have offered a
viable means to create endothelialized micro-channels
(i.e. microvessel-like structures) [142, 145, 146] that can
be adapted to include pericytes alongside these channels
(Fig. 2a). Work from the labs of Steven George and

Chris Hughes has yielded one such microfluidics plat-
form that reproducibly develops perfused vessels and al-
lows incorporation of other cell types including pericytes
[147–149]. These types of bioengineered microvessels
can be further adapted and interrogated to better under-
stand the interface between the microcirculation and
cells in the surrounding parenchyma. Blood-brain barrier
models for example integrate brain astrocytes (either in
basic co-culture and in microfluidics devices) [9] to gain
insight into how this uniquely selective barrier is formed
and how certain pharmacological agents might transi-
ently disrupt it [10, 150]. Additionally, interactions be-
tween surrounding tumor cells and microvessels can be
explored in these models to explore effects of chemo-
therapeutic compounds, efficacy of drug delivery vehi-
cles such as nanoparticles [151, 152], and assessing
toxicity profiles for the microvasculature [147]. Bioengi-
neered microvascular fluidics platforms offer tools to
better understand the microcirculation during formation
of microthrombi and acute pressure changes that might
lead to microvessel rupture [153], the risk for which may
vary according to pericyte investment. Mechanisms
underlying extravasation of leukocytes and perhaps even
metastatic tumor cells might also be addressed in these
constructs [148]. Pericytes and endothelial cells likely
coordinate the selective permeability of the microvessel
wall to allow cells to transmigrate from the lumen into

Fig. 2 Microvascular bioengineering applications in which pericyte incorporation is relevant. a Microfluidic platforms simulating capillaries can address
numerous questions regarding pericyte biology including their response to intraluminal pressure dynamics and associated circumferential stresses.
b Integration of kinetic and agent-based models, such as the one depicted in this simplified illustration, represent how multi-scale computational models
might incorporate pericytes to enhance their ability to recapitulate biological processes such as angiogenesis
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the interstitial space [21]. For instance, pericytes may
alter their connections with each other and the endothe-
lium, as well as the surrounding vBM, in conjunction
with endothelial cell remodeling of their cell-cell junc-
tions [17]. As these microfluidic systems continue to
evolve and grow in their utility, so will our insight into
the fundamental properties and functions of the micro-
vasculature in sustaining tissue health and in contribut-
ing to certain disease conditions [154].
A number of opportunities remain in fully optimizing

the design of microfluidic platforms to more faithfully
recapitulate the microcirculation. One major challenge is
that many vascular channels that form in fluidics devices
rarely remain at a diameter size that would be consid-
ered on the order of capillaries. Specifically, microvessel
diameters typically fall within a range of 3–10 μm, while
many microfluidic platforms operate at diameters larger
than 10 μm. In addition, the materials used in generating
these systems may limit the ability to incorporate mul-
tiple cell types along the microvessel wall. These mate-
rials may also affect the synthesis and deposition of
ECM proteins, causing further divergence from vBM
compositions found in vivo. Because the vBM derived
from pericytes and endothelial cells provide a level of
structural and mechanical integrity to the microvessel
wall, the cell-biomaterial interface becomes a very im-
portant parameter to optimize for strengthening confi-
dence in the observations made. This challenge is also
relevant in use of these models to understand how fluid
inside the vessel exerts specific forces on the vessel wall
beyond the shear stresses that impinge upon the endo-
thelium. Specifically, intraluminal “blood” pressure cre-
ates circumferential, radial, and axial wall stresses that
are counteracted by biological elements in vivo (i.e. cell
stress fibers, ECM components, etc.) (Fig. 2a). In micro-
fluidic devices, these forces might be absorbed by syn-
thetic elements in the system and may therefore prevent
endothelial cells and pericytes from adapting physiolo-
gically to their mechanical environment.
Recent technological advances in both biomaterials and

micro-fabrication techniques including bio-printing cap-
abilities are pushing microfluidic systems into an era of
enormous potential for modeling the microcirculation.
These bioengineered models will expand our understand-
ing of microvascular biology and how to use insight into
these “first principles” to guide development of clinically
relevant therapies for vascular-related pathologies. These
rapidly advancing bioengineered microvasculature systems
are not without critical limitations however. For example,
challenges remain in adequately accounting for key differ-
ences and potential heterogeneities in the diffusion barrier
of vessels relative to the cell types that may be close spatial
proximity to the vessel wall [155]. Work from Dr. Roger
Kamm and colleagues for instance demonstrated that

biochemical crosstalk with macrophages influences endo-
thelial barrier function and impacts tumor cell migration
dynamics, among other modulation of the vessel barrier
[155]. Incorporating vascular pericytes into these novel
bioengineered microvessel platforms will be an important
component of overcoming current technological hurdles,
which will usher in new insights into the complex biology
of the microcirculation that is relevant to tissue engineer-
ing applications [6], cancer immunotherapy [156, 157],
and beyond.

Computational modeling of microvascular
Pericytes
As our appreciation of biological complexity grows with
each new discovery, we must also develop tools and
methods to integrate those insights into working models
that will (i) enhance our understanding of biological sys-
tems at all levels, and (ii) generate new hypotheses to
test, yielding new discoveries and model refinement.
Computational modeling represents a primary example
of such a tool that facilitates synthesis of data sets and
observations from a wide range of experimental systems
[158]. In addition, properly validated computational
models can offer a means for exploring specific pertur-
bations that might be beyond what is feasibility in ex-
perimental models. The field of vascular biology has
benefited from the application of in silico models to a
variety of questions focused on the microcirculation.
Computer simulations have been developed for sprout-
ing angiogenesis [159–161] (Fig. 2b), systemic and local-
ized growth factor kinetics [162, 163], and microvascular
biomechanics [164], as well as for oxygen/nutrient ex-
change within tissue microcirculation [101, 165] and
drug delivery across the microvessel wall [166]. Endothe-
lial cells have been the focus for many of these models,
but as we learn more about how pericytes influence
endothelial cell function (and vice versa), it will be im-
portant to build upon previous models and incorporate
the pericyte compartment into the parameter space, rule
sets, and governing algorithms.

Computational models of angiogenesis
Angiogenic remodeling is a highly dynamic process in-
volving coordination of numerous cellular behaviors
through complex and interconnected signaling networks
[161]. Experimental observation of these events yields
data sets from various levels including transcriptional,
molecular, and cellular. This information guides model
construction with regard to rule sets for specific cell ac-
tivities such as endothelial cell migration or filopodial
extensions, as seen in agent-based modeling (ABM) ap-
proaches [159, 164, 167]. Multi-scale models couple
these actions to underlying molecular pathways and kin-
etic modeling where each molecular species is accounted
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for by specific equations [158] (Fig. 2b). This type of
modeling has been used to address the complexities of
Vascular Endothelial Growth Factor-A (VEGF-A) signal-
ing and crosstalk with the Delta-like 4 (Dll4)-Notch
pathway during angiogenic sprouting [16, 168–170],
among other signaling mechanisms. Recently, Ubezio et
al. utilized complementary experimental and computa-
tional models to demonstrate the importance of dynamic
fluctuations in endothelial Dll4 levels for normal blood
vessel growth [168]. It is becoming increasingly apparent
that vascular pericytes are present on, and track very
closely along, sprouting endothelial cells [83], suggesting
that these and other similar models might provide add-
itional insight into angiogenesis by considering the po-
tential involvement of pericytes.
The various roles that pericytes may play during

angiogenesis are still being elucidated. Sprouting endo-
thelial cells are known to secrete PDGF-BB [171], to
which pericytes respond by maintaining close proximity
to these outwardly migrating cells. Because of their
proximate location to endothelial sprouts, pericytes are
likely capable of directly or indirectly influencing Notch
signals exchanged by endothelial “tip” and “stalk” cells
[83]. Pericytes may also provide feedback regulation of
angiogenic sprouting by a variety of other mechanisms.
For instance, pericytes secrete Angiopoietin-1 (Angpt1)
that binds Tie2 on the endothelium to stabilize micro-
vessels, attenuate vascular remodeling and permeability,
and induce quiescence [172]. Pericytes have also been
proposed to regulate VEGF-A signaling via synthesis of
VEGF-A receptors [173, 174], but this role may be
context-dependent as observations from a range of
models suggest that pericytes produce little, if any, of
the known VEGF receptors [43–46, 175–179]. In
addition to pro- and anti-angiogenic signaling regula-
tion, pericytes also make unique contributions to the
ECM at the pericyte-endothelial cell interface as well as
surrounding developing vessels, i.e. the vBM [43, 90].
These ECM components such as fibronectin, collagens
and laminins provide structural stability for nascent ves-
sels [126], and are also known to retain and present
growth factors that modulate angiogenesis [30, 31, 180].
Our collective understanding of these and emerging
modes of pericyte involvement in angiogenesis is still
expanding, and as it does, it will be useful to integrate
these molecular mechanisms and cellular behaviors into
new and existing computational models of angiogenesis
to gain even more insight into how endothelial cells and
pericytes coordinate the formation of new blood vessels.

Mathematical approaches to growth factor kinetics
In contrast to the models described above that capture
the localized growth factor effects, in silico models have
also been developed to describe the systemic distribution

and effects of soluble growth factors and their receptors.
Kinetics of the VEGF-A pathway for example have been
implemented in computational models, giving predica-
tions for VEGF-A concentrations in the blood as well as
for levels of soluble VEGF-A receptors such as soluble
Flt-1 (sFlt-1/sVEGFR1) [162, 163]. These models require
a precise accounting of all sources of both VEGF-A li-
gands as well as VEGF-A receptors. For this reason,
studies implicating pericytes as potential sources of
VEGF-A ligand and/or its receptors [173, 174] are im-
portant to validate and further establish the extent to
which these potential pericyte sources of VEGF-A li-
gands and receptors are functionally relevant [57]. Simi-
lar analysis is likely warranted for other signaling
pathways related to pericyte function, such as the
PDGF-BB pathway. Soluble isoforms of PDGFRβ have
been described in several contexts [137, 181] including
the developing brain [182], which may be able to diffuse
into the systemic circulation and exert effects more
broadly. Computational platforms that can simulate both
local and systemic PDGF-PDGFRβ dynamics will be es-
sential for understanding how pericytes might respond
to both near-field and circulating cues.

Microvascular biomechanics
Studies exploring the effects of biomechanical cues on
the microcirculation have largely focused on shear
stresses from blood flowing along the apical surface of
the endothelium [8, 131–135]. As mentioned above,
intraluminal blood pressure also exerts forces on the
microvessel wall, namely circumferential, radial, and
axial wall stresses [135]. Pericytes within the vessel wall
certainly experience these mechanical inputs and likely
respond in specific ways such as contracting [183] or
perhaps increasing ECM deposition into the vBM. Con-
firmation that pericytes contribute to vessel wall compli-
ance in response to intraluminal pressure was provided
recently by studies in which pericytes were selectively
ablated [19, 184]. In microvessel regions void of pericyte
investment, capillary diameters passively increased until
a pericyte extension restored coverage in these areas
[184]. These observations support the idea that pericytes
contribute to the mechanical properties and structural
integrity of the microvessel wall, and should therefore be
included in computational models focused on capillary
biomechanics during both angiogenic remodeling and
microvascular homeostasis.

Microcirculation transport modeling
Models of oxygen diffusion and nutrient exchange create
another window into one of the most important func-
tions of the microcirculation [185]. Measuring oxygen
diffusion and nutrient/waste exchange in vivo poses nu-
merous technical challenges, some of which are being
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addressed by recent methodological advances [35, 101,
186]. Complementing the development of experimental
approaches, computational methods have been used to
predict solute exchange throughout microvascular net-
works [187]. These approaches are essential to under-
standing how physiological and pathological changes in
the microvessel wall, including in the pericyte compart-
ment and with their associated ECM, can affect distribu-
tion of nutrients and oxygen within a tissue. Sweeney et
al. recently developed a mathematical model that also
captured pericyte contributions to cerebral blood flow
regulation by acting primarily as signaling conduits to
activate vSMCs upstream [101]. Dynamic imaging of the
mouse cortical microvasculature provided corresponding
experimental observations in support of this model,
demonstrating the utility of combining high-power im-
aging modalities with rigorous computational methods.
Similar approaches focused on drug delivery applications
can provide insight into how these vehicles might be de-
signed for optimal transfer within the microcirculation
[151]. Given the importance of pericyte contributions to
the microvessel wall, and perhaps in regulating endothe-
lial uptake and transcytosis [12], it will be important to
integrate pericytes into these models to better predict
how certain drugs cross from the bloodstream into sur-
rounding tissues.

Conclusions
As transcriptional profiling and high-resolution imaging
technologies continue to advance at an exciting pace, so
too will our understanding of pericytes and their import-
ant contributions to the microvasculature. New insights
will allow us to effectively incorporate pericytes into in
vitro and in silico bioengineered constructs and more
faithfully replicate essential features of in vivo micro-
vascular networks. These novel platforms will facilitate
testing new therapeutic approaches to enhancing micro-
vascular growth in clinically relevant scenarios. They will
also strengthen our ability to screen new and existing
drug compounds for intentional and unexpected effects
on the microcirculation [188], and specifically on micro-
vascular pericytes [149]. For example, drugs given to
myocardial infarction or stroke patients to induce vaso-
dilation and restore tissue perfusion might actually have
deleterious effects on pericytes, directly or indirectly
(e.g. reperfusion injury), and contribute to “no reflow”
within capillary networks [93, 96, 189, 190]. Cell-based
therapies harnessing iPSC technology and the like can
also be evaluated in these pre-clinical models, accelerat-
ing the translation of basic discoveries into medical solu-
tions. It is therefore imperative to continue sharpening
our knowledge of pericytes, uncovering their potential as
drug targets as well as increasing the fidelity of bioengi-
neered microvascular constructs.
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