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Abstract

Metabolic labeling of proteins with non-canonical amino acids (ncAAs) provides unique bioorthogonal chemical
groups during de novo synthesis by taking advantage of both endogenous and heterologous protein synthesis
machineries. Labeled proteins can then be selectively conjugated to fluorophores, affinity reagents, peptides,
polymers, nanoparticles or surfaces for a wide variety of downstream applications in proteomics and biotechnology.
In this review, we focus on techniques in which proteins are residue- and site-specifically labeled with ncAAs
containing bioorthogonal handles. These ncAA-labeled proteins are: readily enriched from cells and tissues for
identification via mass spectrometry-based proteomic analysis; selectively purified for downstream biotechnology
applications; or labeled with fluorophores for in situ analysis. To facilitate the wider use of these techniques, we
provide decision trees to help guide the design of future experiments. It is expected that the use of ncAA labeling
will continue to expand into new application areas where spatial and temporal analysis of proteome dynamics and
engineering new chemistries and new function into proteins are desired.

Keywords: Metabolic labeling, Bioorthogonal chemistry, Residue-specific labeling, Site-specific labeling, Proteomics,
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Overview of protein labeling with click chemistry
functionality
Methods that allow for labeling of proteins co-transla-
tionally, i.e. as they are being synthesized, have wide ran-
ging applications in engineering, biotechnology, and
medicine. Incorporation of non-canonical amino acids
(ncAAs) into proteins enables unique bioorthogonal
chemistries, those that do not react with naturally occur-
ring chemical functional groups, for conjugation. These
conjugate substrates range from fluorophores, affinity re-
agents, and polymers to nanoparticle surfaces, enabling
new advances in technology to study cellular systems
and produce novel biocatalytic and therapeutic proteins.
A key benefit of these techniques is the ability to enrich
for labeled proteins of interest, whereas other labeling
methods add or remove a mass (e.g. isotope labeling [1])
that can be difficult to identify when diluted within com-
plex macromolecular mixtures. In this review, we focus
specifically on techniques that incorporate click chemistry

functionality into proteins of interest and provide decision
tree analyses to guide selection of optimal strategies for
protein labeling methods.

Click chemistry functionality
First coined by Sharpless and colleagues in 2001, click
chemistries are a set of chemical reactions that are readily
catalyzed in aqueous solutions at atmospheric pressure and
biologically-compatible temperatures, with few toxic
intermediates, and relatively fast reaction kinetics [2]. The
suite of specific click chemistry reactions that started with
Staudinger ligation of azide and phosphine [3–5] and
copper-catalyzed azide-alkyne cycloaddition [6, 7], has
rapidly expanded to include more rapid and biologically
friendly chemistries including strain promoted azide-alkyne
cycloaddition [8, 9], oxime or hydrazine ligation [10, 11],
strain-promoted alkyne nitrone cycloaddition [12, 13], tet-
razine ligation [14, 15], and quadricyclane ligation [16, 17].
Here, we focus on azide-alkyne cycloaddition as it is one

of the most widely used, with broad availability of commer-
cial reagents, moderately fast kinetics, and well-established
protocols. Copper(I)-catalyzed azide-alkyne cycloaddition
(CuAAC, Fig. 1a) has been implemented across disciplines,
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from biomaterials [18] and combinatorial chemistry [19] to
polymer synthesis [20], protein activity tagging [21], and
proteomics [22], some of which will be highlighted in later
sections. One disadvantage of CuAAC is that there is
significant cytotoxicity with using copper as the catalyst,
hampering utilization in vivo [23]. To circumvent this limi-
tation, Bertozzi and coworkers introduced a catalyst-free [3
+ 2] cycloaddition reaction between azides and cyclooctyne
derivatives, known as strain promoted azide-alkyne cyclo-
addition (SPAAC, Fig. 1b) [8, 23, 24]. The biocompatibility
of this reaction was first demonstrated in Jurkat cells to
label azide-tagged glycoproteins [8]. The strain-promoted
azide-alkyne click reaction has since been applied in various
in vivo settings with no apparent toxicity [24–27]. Import-
antly, CuAAC and SPAAC are bioorthogonal and will not
interfere with natural biological chemistries.

Labeling of nascent proteins
Chemical biologists and bioengineers have found much
utility in incorporating click chemistry functionality into
nature’s translational machinery. In these methods,
known as genetic code expansion or ncAA labeling [28–
31], a ncAA carrying a desired click chemistry functional
group is introduced to the host expression system and is
incorporated onto an aminoacyl tRNA synthetase (aaRS)
that covalently attaches the ncAA to the corresponding
tRNA (Fig. 2a). The ncAA-tRNA complex is brought
into the ribosome where the tRNA recognizes the ap-
propriate mRNA codon sequence and the ncAA is added
to the growing polypeptide chain (Fig. 2b). ncAA label-
ing can be designed to occur either at specific amino
acid residues of interest, for example using a Methionine
(Met) analog that carries an azide or alkyne functionality
to replace any Met in a newly synthesized protein [3], or
at specific sites in a protein of interest [32].
Though not the focus of this review, it is important to

highlight other site-specific approaches for labeling proteins.

These include leveraging of enzymatic post-translational
modification of proteins with click-chemistry functionalized
non-canonical fatty acids, nucleic acids, and sugars. These
methods utilize so called ‘chemoenzymatic methods’ to label
proteins at specific residues via enzymatic recognition of
specific peptide sequences. In this way, endogenous, engi-
neered, and recombinantly expressed proteins can be effi-
ciently labeled in situ. Some examples include glycosylation
[33–35], sortagging [36, 37] and fatty acylation [38–41], in-
cluding prenylation [10, 42], palmitoylation [43, 44], and
myristoylation [45–49].

Residue-specific labeling of nascent proteins with non-
canonical amino acids
First demonstrated by Tirrell and colleagues, native trans-
lational machinery in E. coli was found to readily incorp-
orate noncanonical Met analogs into proteins in vivo [50–
52]. In this way, alkene (homoallylglycine, Hag) and alkyne
(homopropargylglycine, Hpg) side-chain functionalities
were added at Met sites during protein biosynthesis (Fig. 3,
and Table 1). Later, azide analogs of Met (e.g. Aha, Fig. 3)
were also found to be readily incorporated in vivo [3].
These methods take advantage of the ability for some

ncAAs to incorporate (or become charged) onto native
aaRSs (Fig. 2a), covalently attach to the corresponding
tRNA, and subsequently incorporate into growing polpy-
peptide chains (Fig. 2b). The kinetics of Aha and Hpg
binding to the methionyl tRNA synthetase (MetRS) are
slower than that of Met (kcat/Km of 1.42 × 10− 3 and
1.16 × 10− 3 s− 1·μM− 1 for Aha and Hpg, respectively vs
5.47 × 10− 1 s− 1·μM− 1 for Met) [3]. Nonetheless, this is a
straightforward labeling method with no need for gen-
etic engineering of the protein or organism under study
(Fig. 4). For applications where 100% Met substitution is
not necessary (e.g. enrichment for proteomics), adding the
ncAA at concentrations where it can outcompete with Met
provides sufficient functional incorporation. Alternatives
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Fig. 1 Azide-alkyne cycloaddition reactions. a Copper(I)-catalyzed [3 + 2] azide-alkyne cycloaddition (CuAAC). b [3 + 2] cycloaddition of azides and
strain-promoted alkynes (cyclooctynes) (SPAAC)
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that increase ncAA incorporation include using Met auxo-
trophic strains of E. coli that cannot make their own Met
[52], or Met-free media for mammalian cell culture. Or-
thogonal aaRSs have also been engineered to bind to
ncAAs in cells expressing the mutant aaRS, allowing for
protein labeling with ncAAs in specific cell types [53–57].

Site-specific labeling of proteins with non-canonical amino
acids
An alternative to residue-specific ncAA incorporation is
site-specific ncAA incorporation, in which a ncAA is in-
corporated exclusively at a pre-determined site.

Motivated by the implications for detailed studying of
protein structure and function, Schultz and colleagues
were one of the first to demonstrate the feasibility of
site-specific incorporation of ncAAs into a full-length
protein in 1989 [32]. To accomplish this, the anticodon
of suppressor tRNA molecules was engineered to
recognize the amber stop codon (UAG), chemically ami-
noacylated with the ncAA, and then added to an in vitro
protein synthesis system. Later, Furter site-specifically
incorporated ncAAs in vivo by using an engineered or-
thogonal tRNA/tRNA synthetase pair for amber sup-
pression. As illustrated in Fig. 5, the tRNA/tRNA
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Fig. 3 Examples of non-canonical amino acids. Chemical structures of amino acids highlighted in this review: methionine (Met), homoallylglycine
(Hag), homopropargylglycine (Hpg), azidohomoalanine (Aha) and azidonorleucine (Anl). Azidophenylalanine (Azf), and acetylphenylalanine (Acf)
are analogs of phenylalanine. Propargyloxyphenylalanine (Pxf) is a tyrosine analog (See Table 1 for more discussion of these ncAAs)
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Fig. 2 Incorporation of ncAAs by native cellular machinery. Non-canonical amino acids (ncAAs) are incorporated into the growing polypeptide
chain as the protein is synthesized at the ribosome. a ncAA is covalently attached to a tRNA by aminoacyl tRNA synthetase (aaRS). b The tRNA,
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synthetase pair is exogenous and operates orthogonally
and the tRNA is specific for UAG instead of AUG [58].
Since then, over 100 different ncAAs have been incorpo-
rated either in vivo or in vitro in a variety of systems in-
cluding bacteria, yeast, plant, mammalian, and human
cells [59, 60]. The methods for site-specific ncAA in-
corporation have also expanded beyond amber codon

suppression to include suppression of additional stop co-
dons (nonsense suppression) [61, 62], recoding of sense
codons [63], and recognition of 4-base codons (frame-
shift suppression) [62, 64, 65], though amber suppres-
sion is still the most widely used method.
As described above, initial ncAA incorporation was

performed using chemically aminoacylated tRNA and an

Table 1 List of ncAAs discussed in the review and their methods of incorporation

ncAA Codon replacement Natural amino
acid analog

Genetic modification Labeling method

Hag AUG Met Not neededa Residue-specific [50–52]

Hpg AUG Met Not neededa Residue-specific [22, 50, 51, 73]

Aha AUG Met Not neededa Residue-specific [3, 22, 75, 84–87]

Anl AUG Met Transgenic lines that express a MetRS mutant
capable of charging Anlb

Residue-specific [53, 54, 78, 88–90, 92–95]

Azf UUC, UUU
UAG

Phe Transgenic lines that express a PheRS mutant
capable of charging Azfb

Transgenic lines that express an orthogonal
aaRS/amber suppressor tRNA pair evolved for
Azf specificity

Residue-specific [55]
Site-specific [118]

Acf UUC, UUU
UAG

Phe Transgenic lines that express a PheRS mutant
capable of charging Acfb

Transgenic lines that express an orthogonal
aaRS/amber suppressor tRNA pair evolved for
Acf specificity

Residue-specific [136]
Site-specific [111]

Pxf UAG Tyr Transgenic lines that express an orthogonal
aaRS/amber suppressor tRNA pair evolved
for Pxf specificity

Site-specific [124]

aThe efficiency of the ncAA incorporation is greatly enhanced by using Met auxotrophic strains
bFor cell selective labeling, the mutant aaRS is expressed under the control of cell-specific promoters
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Fig. 4 Overview of residue-specific protein labeling. a A ncAA (red sphere) is added to the system (cell culture or animal model). Native
translational machinery incorporates the ncAA into the newly synthesized proteins. b An example of the codon sequence and corresponding
peptides that result from either natural synthesis or synthesis in the presence of the ncAA. c A peptide labeled at two residue-specific sites with a
ncAA carrying an alkyne functional group is conjugated to a azide-containing fluorophore via CuAAC
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in vitro protein synthesis system [32, 65]. This method
circumvents the need for evolving aaRSs to charge sup-
pressor tRNA, and enables incorporation of virtually any
ncAAs, including very large ncAAs such as those
pre-conjugated to polyethylene glycol [64, 66]. Although
chemically aminoacylated tRNA is still used for
small-scale applications, it is not economically scalable
for large-scale biotechnology applications, which must
instead rely on enzymatic aminoacylation.
For large-scale applications, an orthogonal tRNA is

engineered to recognize the specific codon sequence,
and an orthogonal aaRS charges the engineered tRNA
with the desired ncAA to enable continuous tRNA ami-
noacylation throughout protein expression (Fig. 5) [67].
The amber stop codon, UAG, is used less frequently by
organisms than the other stop codons and is commonly
targeted as the repurposed codon [68], though the other
stop codons have also been successfully utilized [61, 62].
Frameshift suppression is executed similarly, by target-
ing a quadruplet codon [65]; however, suppression effi-
ciencies are reportedly lower than nonsense suppression
[62, 69]. By employing a combination of suppression
techniques, multiple ncAAs can be site-specifically in-
corporated simultaneously [61, 62, 64, 69, 70]. In these
cases, the suppression machinery must be mutually or-
thogonal in order to maintain site-specificity.
Overall, the site-specific approach provides signifi-

cantly more control over the exact pre-defined location
of ncAA incorporation into the protein as compared to
other methods [71]. It also facilitates very high ncAA
incorporation efficiencies [67]. As such, it is a powerful
tool for biotechnology applications and will be detailed

later in the paper. Potential uses of this technique for
proteomics applications are still being developed and
are briefly highlighted at the end of the following
section.

Applications of ncAA labeling
Proteomics
Residue-specific labeling for proteomic applications
Residue-specific methods have since been applied to iden-
tify de novo protein synthesis in a variety of contexts.
Dieterich et al. introduced the bioorthogonal
non-canonical amino acid tagging (BONCAT) strategy for
selective analysis of de novo protein synthesis with high
temporal resolution [22, 72]. In this method, cells are cul-
tured in media supplemented with Met analogs like Hpg
or Aha, that are tagged with alkyne or azide functional
groups, respectively (Fig. 4). Since azides and alkynes are
bioorthogonal moieties, Hpg- and Aha-labeled proteins
can be selectively conjugated to affinity tags even within
complex cellular or tissue lysates to enrich the newly syn-
thesized proteins from the pool of pre-existing unlabeled
proteins. Additionally, labeled proteins can be ligated to
fluorescent dyes for protein visualization using a sister
technique referred to as fluorescent non-canonical amino
acid tagging (FUNCAT) [25, 73].
Over the last decade, BONCAT has gained wide rec-

ognition because of its capability of tracking continuous
changes in protein expression. It has been applied in
mammalian cell cultures to study protein acylation [74],
lysosomal protein degradation [75], and inflammation
[76]. The method has also been used in various bacterial
systems in order to explore quorum sensing [77], identify
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virulence factors [78], and monitor bacterial degradation in
phagocytes [79]. Moreover, BONCAT has proven effective
in more complicated biological systems such as zebrafish
[80], Caenorhabditis elegans [55, 81], and Xenopus [82].
Until recently, it was presumed that BONCAT cannot

be applied to in vivo labeling of the rodent proteome be-
cause mammalian cells would favor incorporating en-
dogenous Met, rather than an analog, into newly
expressed proteins [83]. However, Schiapparelli et al. suc-
cessfully labeled newly synthesized proteins in the retina
of adult rats by intraocular injection of Aha [84]. Further,
McClatchy et al. showed that in vivo labeling of the entire
murine proteome is feasible by feeding animals an
Aha-enriched diet for 4 to 6 days [85, 86]. More recently,
Calve and Kinzer-Ursem demonstrated that two days of
intraperitoneal injection of Aha and Hpg is sufficient for
systemic incorporation of the Met analogs into the prote-
ome of both juvenile mice and developing embryos [87].
In this study, neither perturbation of physiological func-
tion of the injected mice nor atypical embryonic develop-
ment was observed. In addition, both Aha and Hpg were
successfully incorporated into different murine tissues in a
concentration-dependent manner [87]. Notably, labeling
with Hpg was less efficient than Aha, which is in agree-
ment with findings by Kiick et al. that the activation rate
of Hpg by MetRS is slower than Aha [3]. In light of these
results, the successful incorporation of Met analogs into
the entire murine proteome through intraperitoneal injec-
tion will pave the road for using animal models to tempor-
ally map protein expression. This method provides several
advantages over introducing ncAAs via diet because intra-
peritoneal injection is relatively easy to perform, global
proteome labeling is achieved in a shorter time period,
and injection warrants more accurate dose-effect
calculations.
With the aim of probing proteomic changes in specific

cell types, engineered aaRS technology was adopted to
allow cell-selective labeling with ncAAs. This technique,
pioneered by the Tirrell group, was first made possible by
identifying E. coli MetRS mutants that can charge the Met
analog azidonorleucine (Anl) to Met sites [88]. Anl is not
a substrate to endogenous aaRSs, hence only cells bearing
the mutant MetRS are labeled. Since its discovery, the mu-
tant MetRS Anl labeling technique has been applied to
label nascent proteomes of E. coli [51, 57, 89, 90], Salmon-
ella typhimurium [91], Yersinia enterocolitica and Yersinia
pestis strains [78], and Toxoplasma gondii [92] in infected
host cells. The exclusive expression of the mutant MetRS
in these pathogens allowed selective detection of pathogen
proteins among the more abundant host proteins.
To further demonstrate the utility of this approach, other

variants of aaRS have been evolved to enable cell-selective
incorporation of ncAAs in mammalian cells and animals.
Using Caenorhabditis elegans as a model organism, Yuet

et al. employed a phenylalanyltRNA synthetase mutant cap-
able of incorporating the ncAA azidophenylalanine (Azf,
Fig. 3) into worm proteins [55]. In their study,
cell-type-specific resolution was achieved by expressing the
mutant synthetase in targeted cells under the control of
cell-specific promoters. Similarly, Erdmann et al. demon-
strated that cell selectivity in Drosophila melanogaster can
be achieved by using murine (mMetRS) and drosophila
MetRS (dMetRS) mutants that can activate Anl [93]. The
dMetRS variant was further utilized by Niehues et al. to
study protein synthesis rates in a drosophila model of Char-
cot–Marie–Tooth neuropathy [94], while the mMetRS vari-
ant was applied to selectively tag astrocyte proteins in a
mixed culture system [95] and to label the nascent prote-
ome of several mammalian cells [54].
More recently, Schuman and coworkers advanced the

MetRS mutant technology to enable cell-selective label-
ing in live mammals for the first time [53]. In this sem-
inal work, selective labeling and identification of nascent
proteomes in hippocampal excitatory and cerebellar in-
hibitory neurons was achieved using a transgenic mouse
line wherein a MetRS mutant is expressed under the
control of Cre recombinase. The Conboy group ex-
panded this technique to identify the “young” proteins
that were transferred to old mice in a model of hetero-
chronic parabiosis [96]. This application was further lev-
eraged by the Conboy and Aran groups by designing a
graphene-based biosensor capable of selective capturing
and quantifying of azide-labeled blood proteins that trav-
eled from young to old parabiotic pairings [97], signify-
ing the potential utility of cell-selective technology in
the field of diagnosis and biomarker discovery.

Site-specific labeling for proteomic applications
While residue-specific ncAA labeling has been primarily
used for proteomic applications due to the ease of use and
incorporation throughout the proteome, site-specific la-
beling has the potential to also assist in this area [53, 98].
For example, ncAAs could be used to label and trace a
specific protein as it is expressed, migrates, and travels
within a cell or tissue. In addition, ncAAs could be com-
bined with proteomics to track a specific protein that is
available at low levels. A factor that has limited
site-specific ncAA use in proteomics is that this area of re-
search has been focused on single-celled organisms,
whereas proteomic studies are commonly performed in
multicellular organisms. Recently, site-specific ncAA has
been expanded to the multicellular organisms Caenorhab-
ditis elegans and Drosophila melanogaster [99, 100], hold-
ing promise for the implementation into additional
multicellular organisms. In the meantime, residue-specific
labeling will continue to be the predominant approach
when using ncAAs for most proteomics applications.
With the increasing variety of approaches to ncAA
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incorporation, it is important to identify which approaches
are best suited to a given application. To help guide re-
searchers find the optimal strategy to label proteins for a
given proteomics application, a decision tree diagram is
provided in Fig. 6.

Biotechnology applications
Traditional approaches to bioconjugation in biotechnol-
ogy often target reactive side chains of natural amino
acids such as lysines, though this results in a complex
mixture of products modified at different locations and
to different extents, complicating protein separation and

often reducing protein activity. For some applications,
sufficient control is afforded by altering the pH of a con-
jugation reaction to enhance the reactivity of the
N-terminal amino group [101, 102]. An advantage of this
method is circumvention of protein mutation, however,
restricting bioconjugation to the N-terminus limits the
potential for conjugation site optimization and can be
deleterious to the structure and function, as was found
to be the case with parathyroid hormone [101].
Surface-exposed cysteines, either native or substituted
into the proteins, may also be targeted for modification,
as they are more limited than other reactive amino acids
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analogs have been utilized (See Fig. 3 and Table 1). No genetic modification is needed for global proteome labeling with ncAA. Nevertheless, the
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mammalian animal models (e.g. nematodes) can be achieved by adding the ncAA directly to the culture/feeding media. However, if higher
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be incorporated site-specifically in the polypeptide chain in response to an amber stop codon. This requires introducing the amber codon into
the gene of interest and using an orthogonal aaRS/amber suppressor tRNA pair evolved for charging the desired ncAA
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such as lysine [103]. However, successful application of
these methods is limited by the inherent properties of the
target protein – in some proteins, the N-terminus may be
inaccessible or involved in protein function, and engineer-
ing cysteine sites into proteins with natural cysteines may
interfere with native disulfide bond formation.
As uniquely reactive chemical moieties, ncAAs provide a

tool for enhancing commercial and therapeutic applications
of proteins in a bioorthogonal manner. ncAAs have been
used to study protein stability and also generate proteins
with improved stability [104]. Characterization of protein
structure and conformation, properties essential for effect-
ive rational enzyme and drug design, can also be improved
through FRET analysis following conjugation of fluoro-
phores to incorporated ncAAs [63, 105, 106]. Click chemis-
try compatible ncAAs are also attractive methods for
covalent protein bioconjugation, which has bearings on bio-
catalysis [104, 107], biochemical synthesis [108–110],
therapeutic optimization [111, 112], and vaccine design
[113, 114]. For example, enzyme immobilization is an
established method for stabilization of proteins that
allows recoverability of enzymes in biocatalysis [115–
117], and has been demonstrated to improve the effi-
ciency of enzymatic cascades by improving pathway
flux [108–110]. Immobilization of such enzymes using
ncAA can provide greater control over orientation,
which is important for maintaining the activity of many
enzymes. Similarly, polymer-protein conjugation is a
well-established method for stabilizing therapeutic pro-
teins against thermal or pH stress, proteolytic attack, and
improving pharmacokinetic profiles [118–120], but is
often accompanied by marked decreases in specific activ-
ity associated with imprecise control over location and ex-
tent of modification. These conjugates can be enhanced
by the greater control and specificity of conjugation
afforded by ncAA incorporation and targeting [111, 112,
118]. Finally, virus-like particles (VLPs) have emerged as
promising candidates for safe, effective vaccines as well as
functionalizable nanoparticles for drug delivery [121, 122].
The surface of these proteinaceous nanoparticles can be
“decorated” with a variety of antigens or polymers to im-
prove the generation of adequate immune response to
presented antigens or mask immunogenicity of the VLP
particle [71, 121]. ncAAs provide bioorthogonal conjuga-
tion targets to maintain the integrity of both the VLP and
displayed antigens [114, 121].

Residue-specific labeling for biotechnology applications
In some cases, residue-specific labeling provides ad-
equate control of conjugation site to maintain sufficient
protein activity. For example, Met replacement was used
to functionalize a VLP which contained only one Met in
each capsid monomer [114]. For cases such as these, in
which there are small numbers of accessible residues of

a certain type, residue-specific labeling may be sufficient.
For proteins in which the N-terminal methionine (fMet)
is accessible, a mixture of products may still result due
to ncAA incorporation at fMet. Additionally, for applica-
tions in which a mixture of conjugation sites in the
product is acceptable, residue-specific ncAA incorpor-
ation offers a simplistic approach circumventing identifi-
cation of necessary tRNA synthetases. A disadvantage of
this approach, however, is that when multiple instances
of a replaced residue are surface-accessible, targeting of
the ncAA can still result in a mixture of products modi-
fied at different locations and to different extents, similar
to that seen with targeting of natural amino acids such
as lysine [101]. This limitation is particularly important
in development of conjugated proteins for medicinal ap-
plications, where consistency in product specifications
and performance is key.

Site-specific labeling for biotechnology applications
In many applications, including both the study of
protein function and the design of enhanced pro-
teins, it is desirable to incorporate the ncAA pre-
cisely at a pre-determined site. For example,
conjugation site has been shown to have a significant
effect on the stability and activity of antibody-drug conju-
gates [123], polymer-protein conjugates [111, 112, 118],
and immobilized proteins [124]. Site-specific ncAA incorp-
oration enables precise control of conjugation site to allow
optimization as well as production of homogenous protein
conjugates. This homogeneity is especially important for
therapeutic applications such as antibody-drug conjugates
and polymer-conjugated therapeutics where precise
characterization is necessary [70, 111, 112, 123, 125, 126].
Therefore, protein conjugation for biotechnology applica-
tions must often be done in a site-specific manner to
optimize conjugate homogeneity, activity, and protein sta-
bility. For example, using the ncAA acetylphenylalanine
(Acf, Fig. 3), polyethylene glycol conjugation (PEGylation)
of human growth hormone (hGH) was optimized for con-
jugation site, enabling mono-PEGylation and development
of an active PEG-hGH with increased serum half-life [111].
Notably, Cho and coworkers reported as much as a 3.8-fold
increase in the Cmax of the optimally PEGylated hGH com-
pared to hGH PEGylated at other sites, demonstrating the
importance of site optimization and precise conjugation site
targeting for pharmacokinetic properties [111].
In biocatalysis and enzyme production, site-specific in-

corporation of ncAA can be instrumental in preparation
of robust, reusable proteins to improve industrial applic-
ability. Deepankumar and coworkers immobilized trans-
aminase to a chitosan substrate site-specifically to
produce an immobilized enzyme which facilitated simple
purification and maintained a specific activity nearly equal
to that of the wild-type enzyme [104]. The enhanced
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potential for optimization of conjugated enzymes is fur-
ther demonstrated in a study by Mu and coworkers, in
which monoPEGylated derivatives of fibroblast growth
factor 21 (FGF21) were prepared via site-specific incorpor-
ation of Acf (Fig. 3). This study identified multiple PEGy-
lated derivatives of FGF21, including one where the
substituted residue was originally a leucine, which main-
tained high activity and 15–30-fold increased half-lives
[112]. By contrast, another leucine substitution in the
same protein resulted in a conjugate which was entirely
inactive, highlighting the necessity for site-specific versus
residue-specific modifications in maintaining activity of
some proteins [112]. These studies emphasize the import-
ance of precise control over conjugation site selection for
optimal design and production of biotechnology products
such as therapeutic protein conjugates and biocatalysts.
Site-specific ncAA incorporation also allows for close con-

trol over the number of sites which are modified by conjuga-
tion, which is an important aspect of conjugate
optimization. For example, Wilding and coworkers recently
demonstrated that dual PEGylation of T4 lysozyme at two
site-specifically incorporated Azf (Fig. 3) residues decreased
the double Azf-incorporated T4 lysozyme variant’s activity
and did not increase its stability, despite increases in the sta-
bility and activity corresponding to PEGylation of each site
individually [118]. Similarly, close control over conjugation
extent for antibody-drug conjugates is necessary to ensure
drug homogeneity and enhance therapeutic index [126,
127]. Motivated by this capacity to improve antibody-drug
conjugates through close control of drug-antibody ratios
(DAR), Zimmerman and coworkers engineered a high fidel-
ity tRNA/aaRS pair to incorporate the highly click-reactive
ncAA azido-methyl-phenylalanine (AMF) site-specifically
into a Trastuzumab antibody fragment [126]. The re-
searchers demonstrated drug-to-antibody ratios ranging
from 1.2 to 1.9 depending on the AMF incorporation site,
and potent cytotoxic activity which correlated with the
DAR of each variant tested [126]. Recently, Oller-Salvia
and coworkers further demonstrated the ability to
closely control DAR by using site-specific incorporation
of a cyclopropane derivative of lysine to achieve
drug-conjugated Trastuzumab with a DAR of > 1.9,
indicating high conjugation efficiency of the two ncAA
sites within the fragment [127]. Together, these studies
illustrate the utility of site-specific ncAA incorporation
in biotechnology towards the production of optimized, con-
trolled, and well-characterized conjugates for medicinal and
biocatalytic applications.
Given the varied, site-dependent effects of ncAA incorp-

oration and conjugation, a major challenge with ncAA in-
corporation is understanding and predicting the impact
that the mutation will have on the protein. However, recent
progress has demonstrated the potential for molecular sim-
ulations to inform site selection [118, 124, 128]. For

example, simulations unexpectedly predicted a 3%
solvent accessible location as being highly stabilizing
to the protein if covalently immobilized at this site
[128]. Common design heuristics would prevent this
site from ever being considered; however, using the
ncAA propargyloxyphenylalanine (Pxf, Fig. 3), this site
was shown to be better than highly surface accessible
sites [124]. Using the same protein, simulation screen-
ing was also effective in predicting optimal specific
sites for PEGylation, which were different than those
predicted for immobilization [118]. The predictions were
validated with high correlation using copper-free click--
chemistry reactive ncAA Azf (Fig. 3) [118]. Due to
these recent successes using molecular simulation, it
is anticipated that rapid simulation approaches will
increasingly assist in determining the best locations
for ncAA incorporation for both the bioconjugation
application and for reducing or eliminating structural
strain due to the ncAA mutation. As tools for ncAA
incorporation continue to increase in efficiency and
simplicity and costs continue to decrease, it is antici-
pated that ncAAs will become not only a research
tool for bioconjugation optimization, but also an in-
dustrially viable therapeutics and biocatalysts produc-
tion platform.
With the increasing variety of approaches to

site-specific ncAA incorporation, it is important to iden-
tify which approaches are best suited to a given applica-
tion. Figure 7 provides a decision tree to aid in tool
selection based on the needs of a specific application. If
bioorthogonal conjugation is not necessary, conjugation
at the C-terminus, with cysteine or with other natural
amino acids such as lysine, could be considered. How-
ever, significant mutagenesis may be necessary to enable
site-specific conjugation. In contrast, ncAAs provide
bioorthogonal conjugation and facilitate control over the
conjugation location with minimal mutagenesis. For pro-
teins in which there are a limited number of
surface-accessible instances of a residue such as Met,
residue-specific ncAA labeling may be the most effective
as it can be done without orthogonal translation ma-
chinery. Nevertheless, potential incorporation of a ncAA
at fMet must be considered and a site-specific approach
should be taken if fMet labeling is a concern. For any
site-specific application, orthogonal aaRS/tRNA pairs
enable straightforward implementation of nonsense and
frameshift suppression, especially for in vivo protein syn-
thesis applications, and are ideal when available. When
an aaRS has not been engineered for the desired ncAA,
chemically aminoacylated tRNA may be used. However,
for large-scale applications, the higher cost of this ap-
proach motivates engineering of an orthogonal aaRS/
tRNA pair. Finally, as will be discussed in the future di-
rections section, a cell-free protein synthesis approach
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should be considered in cases where high-throughput
evaluation or on-demand production of conjugates is
necessary.

Future directions
To expand the potential of ncAA labeling for research and
industrial applications, additional studies are necessary to
address key limitations in the efficiency of ncAA incorpor-
ation and optimal modification site selection. It is gener-
ally recognized that one limitation of residue-specific
ncAA labeling is that it commonly requires prior deple-
tion of a natural amino acid to achieve high proteome la-
beling. This practice can disturb normal biological
functions and hence adapting methods that enable high
levels of ncAA incorporation in the presence of the

canonical amino acid is an important advancement for ap-
plications in higher-order organisms [53, 55, 85–87].
Current challenges in obtaining the highest quality

proteomic mapping lie in the optimization of the click
chemistry reactions and enrichment protocols. Therefore,
continued discovery of new click chemistries with faster
kinetics and higher specificity will increase the potential
for ncAAs in proteomics applications. In addition, devel-
opment of techniques that allow cell- and tissue-specific
labeling in mammalian systems with lower non-specific la-
beling and background noise will have a significant impact
on resolving cellular proteomics maps with high reso-
lution. This, combined with advances in engineering aaRS
mutants that enable charging ncAAs at higher rates and
promoters that can drive the expression of the mutant
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Fig. 7 Decision tree for ncAA biotechnology applications. For bioconjugation, it is easiest to target natural amino acids such as lysine, however,
this approach provides minimal control over the conjugation site. In addition, the conjugation chemistry is not biorthogonal such that other
proteins in the sample will also be conjugated. If biorthogonality is not necessary, the natural N- or C- terminus of the protein can also be
targeted. Cysteine can also be targeted, but this can interfere with disulfide bonds if present in the protein. In addition, cysteine conjugation may
require some mutagenesis for site-specific conjugation as native surface-exposed cysteines need to be removed and replaced with cysteine at
the desired conjugation location. If biorthogonal conjugation is desired and/or greater control over the conjugation site is desired, then first
consider residue-specific ncAA incorporation. This has some of the same limitations as targeting natural amino acids as this method replaces a
natural amino acid with an analog. However, for proteins with a small number of methionines, this could work well for the desired application. In
some studies partial ncAA incorporation at the N-terminus has been observed. If precise predetermined control of the exact locations for
conjugation is desired, consider site-specific ncAA incorporation using orthogonal aaRS/tRNA pairs. If aaRS/tRNA have not been engineered to
incorporate the desired ncAA for the desired conjugation reaction, chemically aminoacylated tRNA can be used at the small scale. Otherwise, an
aaRS/tRNA pair will need to be engineered. Fortunately, a number of aaRS/tRNA pairs have already been engineered for site-specifically
incorporating click-chemistry reactive ncAAs
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synthetase with high cell specificity, will enhance our un-
derstanding of the spatial and temporal aspects of prote-
ome dynamics.
A major hurdle for biotechnology applications where

stoichiometric labeling is desired is that ncAA incorpor-
ation efficiency for site-specific protein modification
often varies by the incorporation site. Elucidating factors
determining site-dependence will enable the more effect-
ive design of ncAA-modified proteins, for example, by
targeting bases that flank suppressed codons [129]. Add-
itionally, investigation of mechanisms involved in ribo-
some stoppage, where polypeptide synthesis stalls or
terminates prematurely, may also provide illumination
towards efficient modification site selection. Develop-
ment of novel cell strains lacking factors inhibitory to
ncAA incorporation may also improve labeling effi-
ciency. Such strains have already been developed in E.
coli by knocking out release factor components respon-
sible for competition with nonsense suppression at
amber stop codons to reduce premature termination
[125, 130, 131]. However, development of such strains
for other organisms or ncAA incorporation methods
may be challenging as the rarely used amber stop codon
required significant mutation before a viable E. coli
strain was produced [125, 130, 131].
Protein labeling, even site-specifically, can also have a

dramatic effect on the properties of the protein in a man-
ner that is highly dependent on modification site/sites.
Currently, no complete set of parameters exists to identify
sites amenable to labeling based on the primary, second-
ary, or tertiary structural context [118]. This limitation is
compounded by a similar lack of knowledge regarding the
effects of locational dependence on ncAA incorporation
[118, 129]. In order to capitalize on the benefits of ncAA
incorporation for biotechnology applications, tools that
enable the rapid identification of sites most amenable to
ncAA incorporation and post-translational modification
are necessary. Such tools include high-throughput screens
for modification site evaluation and development of accur-
ate parameters for ncAA incorporation into coarse-grain
molecular models to enable rapid in silico screening of
modification sites. Development and refinement of such
tools are critical to circumvent costly design/build/test cy-
cles for advanced proteins in fields such as imaging, medi-
cine, and biocatalysis.
Another potential solution to improve ncAA incorpor-

ation into particular proteins of interest is in vitro or ‘cell--
free’ protein synthesis where some of the factors limiting
ncAA incorporation can be overcome. For example, mul-
tiple labs have removed the native tRNAs and then added
a minimal set of in vitro synthesized tRNAs, essentially
emancipating most codons for competition-free ncAA in-
corporation [63, 132]. Additional advantages that in vitro
or ‘cell-free’ protein synthesis provides over in vivo

expression include direct access to the reaction environ-
ment, eliminating transport limitations of ncAAs across
cell membranes and walls and allowing facile supplemen-
tation with exogenous components to improve incorpor-
ation efficiency [69, 133]. The flexibility of this system
allows the incorporation of less-soluble ncAAs with
click-compatible side chains, expanding the repertoire for
protein labeling [133]. Importantly, cell-free systems can
also be lyophilized for on-demand distributed use in an
endotoxin-free format for point-of-care medicinal applica-
tions or for rapid response to market demands for bio-
chemical products [134, 135].
In conclusion, ncAA labeling is a versatile tool that en-

ables the identification of de novo protein synthesis and
proteome dynamics and adds new functionality to pro-
teins of interest. With the continued development of
new technologies for ncAA incorporation, it is increas-
ingly difficult to determine the best approach for a given
application. To assist in the experimental design of new
applications of ncAA labeling, decision tree diagrams are
provided for proteomics and biotechnology applications
in Figs. 6 and 7, respectively. It is expected that these
technologies will continue to expand into other applica-
tions areas in proteomics and biotechnology and be used
to increase insights into spatiotemporal protein expres-
sion patterns, protein structure-function relationships,
and to open new avenues into engineering new protein
functions.
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