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Abstract

Background: Human mesenchymal stem cells (hMSCs) are intensely researched for applications in cell therapeutics
due to their unique properties, however, intrinsic therapeutic properties of hMSCs could be enhanced by genetic
modification. Viral transduction is efficient, but suffers from safety issues. Conversely, nonviral gene delivery, while
safer compared to viral, suffers from inefficiency and cytotoxicity, especially in hMSCs. To address the shortcomings
of nonviral gene delivery to hMSCs, our lab has previously demonstrated that pharmacological ‘priming’ of hMSCs
with the glucocorticoid dexamethasone can significantly increase transfection in hMSCs by modulating transfection-
induced cytotoxicity. This work seeks to establish a library of transfection priming compounds for hMSCs by
screening 707 FDA-approved drugs, belonging to diverse drug classes, from the NIH Clinical Collection at four
concentrations for their ability to modulate nonviral gene delivery to adipose-derived hMSCs from two human
donors.

Results: Microscope images of cells transfected with a fluorescent transgene were analyzed in order to identify
compounds that significantly affected hMSC transfection without significant toxicity. Compound classes that
increased transfection across both donors included glucocorticoids, antibiotics, and antihypertensives. Notably,
clobetasol propionate, a glucocorticoid, increased transgene production 18-fold over unprimed transfection.
Furthermore, compound classes that decreased transfection across both donors included flavonoids, antibiotics, and
antihypertensives, with the flavonoid epigallocatechin gallate decreasing transgene production − 41-fold compared
to unprimed transfection.

Conclusions: Our screen of the NCC is the first high-throughput and drug-repurposing approach to identify
nonviral gene delivery priming compounds in two donors of hMSCs. Priming compounds and classes identified in
this screen suggest that modulation of proliferation, mitochondrial function, and apoptosis is vital for enhancing
nonviral gene delivery to hMSCs.
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Introduction
Human mesenchymal stem cells (hMSCs) are under ex-
tensive research for applications in tissue engineering
and cell therapeutics due to their unique therapeutic
properties, including differentiation potential [1], immu-
nomodulatory capacity [2], and trophic tissue support
[3]. While hMSCs can mediate a therapeutic effect alone,
ex vivo genetic modification could further advance their
clinical applications by enhancing intrinsic therapeutic
properties or endowing hMSCs with new therapeutic
properties (e.g. expressing a chimeric antigen receptor to
target glioblastoma [4]). Genetic modification of hMSCs
through delivery of exogenous genetic material is typic-
ally achieved by viral transduction. Viral gene delivery
has been extensively studied and developed for research
and clinical applications due to its high efficiency in de-
livering genetic cargo [5], but viral vectors have design
and safety concerns that limit their therapeutic potential,
including small transgene capacity, difficult scale-up,
host immune response, and insertional mutagenesis [6].
Conversely, nonviral gene delivery, which typically em-
ploys cationic polymers or lipids that associate with nu-
cleic acids to form complexes, offers advantages over
viral methods in cost, fabrication, design flexibility, and
safety [7]. However, nonviral methods suffer from low
transfection efficiencies and high cytotoxicity, especially
in hMSCs [8].
The primary approach to improve nonviral gene deliv-

ery to cells, including hMSCs, is chemical modification
of existing delivery vectors [9, 10] or design of novel de-
livery systems [11, 12]. Such approaches aim to target
known barriers to nonviral gene delivery, such as cellular
localization and internalization [12], endosomal escape
[13], and nuclear transport and import [14]. However,
this approach has not produced substantial increases in
transfection of hMSCs to the point of clinical signifi-
cance, in part due to a lack of understanding of the biol-
ogy and intrinsic mechanisms of the gene delivery
process.
An alternative approach to improving gene delivery to

hMSCs is the idea of priming, where a compound is added
to cultured cells to modulate the cellular response to non-
viral gene delivery. Our lab has demonstrated that an anti-
inflammatory glucocorticoid drug, dexamethasone, can
prime transfection to hMSCs from multiple donors and
tissue sources by simple supplementation to the culture
media 0–30min prior to transfection [15, 16]. With dexa-
methasone priming, we showed an increase in transgenic
luciferase activity by 10- to 15- fold and an increase in the
proportion of hMSCs expressing transgenic enhanced
green fluorescent protein (EGFP) (i.e. transfection effi-
ciency) by about three-fold, relative to a vehicle control
(VC) [15]. We elucidated that dexamethasone enhances
nonviral gene delivery to hMCSs by reducing transfection-

induced metabolic decline [15], rescuing transfection-
induced protein synthesis inhibition [16], and preventing
apoptosis [16], all while retaining differentiation capacity
of the cells [15].
Our previous work has established chemical priming

as a simple method to enhance gene delivery to hMSCs,
however, few compounds have been identified that can
prime nonviral gene delivery to hMSCs [15–20], and the
underlying biological processes that are necessary for
successful transfection are not well understood. To ad-
dress these issues, a drug repurposing approach similar
to our previous screen for compounds that prime
polymer-mediated gene delivery to human embryonic
kidney cells (HEK 293 T) [17] was used in this current
work to generate a library of compounds from the Na-
tional Institutes of Health Clinical Collection (NCC), a
collection of over 700 clinically approved drugs, belong-
ing to diverse drug classes, made available for drug re-
purposing [21], which prime lipid-mediated nonviral
gene delivery to adipose-derived hMSCs (hAMSCs) from
two human donors at four concentrations spanning four
orders of magnitude. This work constitutes the first
large-scale screen of priming compounds for nonviral
gene delivery to hAMSCs and proposes molecular mech-
anisms that could be exploited for the rational design of
new delivery systems to clinically relevant cells.

Results
The objective of this study was to screen 707 com-
pounds from the NCC on hAMSCs from two donors
(D1 and D2) at four concentrations (100, 13, 1.7, and
0.2 μM) for priming effects on nonviral transfection of a
plasmid expressing a fusion protein of EGFP and lucifer-
ase (pEGFP-Luc) using Lipofectamine 3000 (LF-3000) as
the cationic carrier. Transfection priming was assayed by
fluorescence microscope imaging of EGFP expression,
Hoechst 33342 nuclei stain to assess total cell count, and
ethidium homodimer nuclei stain to assess dead cell
count, in order to screen for compounds that signifi-
cantly (p < 0.05, n = 3) increase (i.e. positive transfection
priming compounds) or decrease (i.e. negative transfec-
tion priming compounds) transfection relative to the
VC. Hoechst ratios, defined as the total cell count in a
well treated with a compound divided by the median
total cell count of 10 VC wells, were used as cutoffs for
toxicity filters, using ratios of 0.5, 0.6, 0.7, and 0.8 for
100, 13, 1.7, and 0.2 μM compound well-concentrations,
respectively, to remove compounds that were considered
too toxic to be further investigated.

NCC screen identifies several compounds that can
modulate transfection in hAMSCs
For D1 hAMSCs, priming with the NCC compounds at
100 μM identified 106 compounds with significant
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transfection efficiency (i.e. number of EGFP positive cells
divided by total cell count) fold-changes (FCs), ranging
from − 8.8 to 3.7 (Fig. 1a and b), 139 compounds with
significant EGFP cell-count (i.e. total number of trans-
fected cells) FCs, ranging from − 6.3 to 4.5 (Fig. 1a and
b), and 62 compounds that had both significant transfec-
tion efficiency and EGFP cell-count FCs, with all FCs re-
ported relative to the VC. Screening the NCC on D1
hAMSCs at 13 μM identified 38 compounds with signifi-
cant transfection efficiency FCs, ranging from − 3.0 to
3.5 (Fig. 1a and b), 84 compounds with significant EGFP
cell-count FCs, ranging from − 2.3 to 4.6 (Fig. 1a and b),
and 20 compounds that had both significant transfection
efficiency and EGFP cell-count FCs, with all FCs re-
ported relative to the VC. Furthermore, screening the
NCC on D1 hAMSCs at 1.7 μM identified 23 com-
pounds with significant transfection efficiency FCs, ran-
ging from − 2.0 to 3.3 (Fig. 1a and b), 118 compounds
with significant EGFP cell-count FCs, ranging from − 2.4
to 3.9 (Fig. 1a and b), and 22 compounds that had both
significant transfection efficiency and EGFP cell-count
FCs, with all FCs reported relative to the VC. Finally,
screening the NCC on D1 hAMSCs at the lowest con-
centration tested (0.2 μM) identified 17 compounds with
significant transfection efficiency FCs, ranging from −
2.3 to 2.7 (Fig. 1a and b), 72 compounds with significant
EGFP cell-count FCs, ranging from − 2.4 to 3.5 (Fig. 1a

and b), and 9 compounds that had both significant
transfection efficiency and EGFP cell-count FCs, with all
FCs reported relative to the VC.
For D2 hAMSCs, priming with the NCC compounds

at 100 μM identified 107 compounds with significant
transfection efficiency FCs, ranging from − 42 to 3.0
(Fig. 1c and d), 160 compounds with significant EGFP
cell-count FCs, ranging from − 32 to 3.1 (Fig. 1c and d),
and 52 compounds that had both significant transfection
efficiency and EGFP cell-count FCs, with all FCs re-
ported relative to the VC. Screening the NCC on D2
hAMSCs at 13 μM identified 74 compounds with signifi-
cant transfection efficiency FCs, ranging from − 3.7 to
2.6 (Fig. 1c and d), 121 compounds with significant
EGFP cell-count FCs, ranging from − 2.6 to 4.7 (Fig. 1c
and d), and 40 compounds that had both significant
transfection efficiency and EGFP cell-count FCs, with all
FCs reported relative to the VC. Furthermore, screening
the NCC on D2 hAMSCs at 1.7 μM identified 48 com-
pounds with significant transfection efficiency FCs, ran-
ging from − 1.9 to 3.2 (Fig. 1c and d), 79 compounds
with significant EGFP cell-count FCs, ranging from − 2.4
to 4.2 (Fig. 1c and d), and 29 compounds that had both
significant transfection efficiency and EGFP cell-count
FCs, with all FCs reported relative to the VC. Finally,
screening the NCC on D2 hAMSCs at the lowest con-
centration tested (0.2 μM) identified 35 compounds with

Fig. 1 Scatter plot showing changes in cell counts as a function of transfection priming in hAMSCs. Transfection efficiency and EGFP cell-count
FCs versus Hoechst-count FCs are shown for a 445 compounds with either significant fold-increases (p < 0.05) in transfection efficiency (89 hits) or
EGFP cell-count (356 hits), relative to the VC, at all four concentrations in D1 hAMSCs, b 152 compounds with either significant fold-decreases
(p < 0.05) in transfection efficiency (95 hits) or EGFP cell-count (57 hits), relative to the VC, at all four concentrations in D1 hAMSCs, c 493
compounds with either significant fold-increases (p < 0.05) in transfection efficiency (150 hits) or EGFP cell-count (343 hits), relative to the VC, at
all four concentrations in D2 hAMSCs, and d 192 compounds with either significant fold-decreases (p < 0.05) in transfection efficiency (114 hits) or
EGFP cell-count (78 hits), relative to the VC), at all four concentrations in D2 hAMSCs
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significant transfection efficiency FCs, ranging from −
2.2 to 2.9 (Fig. 1c and d), 61 compounds with significant
EGFP cell-count FCs, ranging from − 3.4 to 3.4 (Fig. 1c
and d), and 20 compounds that had both significant
transfection efficiency and EGFP cell-count FCs, with all
FCs reported relative to the VC.

Hit selection and drug classification for each donor of
hAMSC
While our screen of the NCC identified many com-
pounds that could significantly modulate transfection ef-
ficiency or EGFP cell-counts in hAMSCs compared to a
VC, we set three criteria to classify compounds as trans-
fection priming hits for each concentration, that is, a
compound is only considered a transfection priming hit
if it meets all three of these criteria at the same concen-
tration: 1) statistically significant transfection efficiency
FC relative to the VC; 2) statistically significant EGFP
cell-count FC relative to the VC; and 3) transgenic lucif-
erase activity, measured in relative light units (RLUs)
normalized to milligrams (mg) of total cellular protein
(RLU/mg), greater than 1.5 FC for positive transfection
priming compounds and less than − 1.5 FC for negative
transfection priming compounds, relative to the VC.
Both transfection efficiency and EGFP cell-count FCs
(measured from imaging data) were used to identify hits
in order to limit false positives from variations in seed-
ing densities within plates. Furthermore, given that the
transgene delivered also produced luciferase, transgenic
luciferase activity was used to validate the imaging data
and confirm a compound as a “hit”. Of the 707 com-
pounds tested, 22 compounds at 100 μM, 13 compounds

at 13 μM, 13 compounds at 1.7 μM, and five compounds
at 0.2 μM were identified as positive transfection priming
hits and 28 compounds at 100 μM, two compounds at
13 μM, four compounds at 1.7 μM, and zero compounds
at 0.2 μM were identified as negative transfection prim-
ing hits for D1 hAMSCs (Supplemental Data). For D2
hAMSCs, 19 compounds at 100 μM, 21 compounds at
13 μM, 19 compounds at 1.7 μM, and 12 compounds at
0.2 μM were identified as positive transfection priming
hits and 28 compounds at 100 μM, nine compounds at
13 μM, and zero compounds at 1.7 and 0.2 μM were
identified as negative transfection priming hits (Supple-
mental Data).
In order to further analyze the transfection priming hits

identified above, hits in each donor were assigned drug clas-
ses according to Chemical Entities of Biological Interest
(ChEBI) [22] classifications and grouped by these classifica-
tions. Drugs and drug classes that exhibited the largest posi-
tive transfection priming (Table 1) and negative transfection
priming (Table 2) effects in each donor were identified and
include glucocorticoids, antibiotics, antihypertensives, non-
steroidal anti-inflammatory drugs (NSAIDs), flavonoids, and
antineoplastics (Tables 3 and 4).

Glucocorticoids are potent enhancers of transfection in
hAMSCs
The largest class of transfection priming drugs identified
in this screen of the NCC were glucocorticoids, with 88
positive transfection priming hits across the two donors
tested (Table 3). Glucocorticoids were also the most po-
tent positive transfection priming compounds identified in
this screen of the NCC for both donors (Tables 1 and 3),

Table 1 Highest fold-changes in transfection priming hits in each donor

Drug Drug Class Concentration [μM] TEa EGFPb RLU/mgc Viabilityd Hoechste

Donor 1 Clobetasol Propionate Glucocorticoid 1.7 2.1 2.5 31 1.1 1.1

Dexamethasone Glucocorticoid 100 2.1 2.6 28 1.2 1.4

Triamcinolone Acetonide Glucocorticoid 100 1.8 2.4 21 1.2 1.4

Fluorometholone Glucocorticoid 13 2.4 2.8 16 1.2 1.1

Fluorometholone Glucocorticoid 100 3.6 4.5 13 1.1 1.2

Donor 2 Beclomethasone dipropionate Glucocorticoid 13 2.4 2.9 6.9 1.0 1.2

Fluorometholone Glucocorticoid 100 2.9 2.7 6.3 0.9 1.0

Fluocinolone acetonide Glucocorticoid 1.7 2.4 2.7 6.0 1.0 1.1

Clobetasol propionate Glucocorticoid 1.7 3.1 2.5 4.7 1.0 0.9

Triamcinolone acetonide Glucocorticoid 1.7 2.5 2.2 5.2 1.0 0.9
aTE FCs were calculated from triplicate averages of EGFP positive cell-counts normalized to Hoechst-counts, relative to the same measurement averaged from the
VCs in each compound’s respective plate
bEGFP FCs were calculated from triplicate averages of EGFP positive cell-counts, relative to the same measurement averaged from the VCs in each compound’s
respective plate
cRLU/mg FCs were calculated from triplicate averages of luciferase luminescence, in relative light units (RLUs), normalized to total protein, relative to the same
measurement averaged from the VCs in each compound’s respective plate
dViability ratios were calculated from triplicate averages of live cell-counts (number of Hoechst stained objects minus number of ethidium stained objects)
normalized to Hoechst-counts, relative to the same measurement averaged from the VCs in each compound’s respective plate
eHoechst ratios were calculated from triplicate averages of total cell-count (determined by Hoechst-count), relative to the same measurement averaged from the
VCs in each compound’s respective plate
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Table 2 Lowest fold-changes in transfection priming hits in each donor

Drug Drug Class Concentration [μM] TEa EGFPb RLU/mgc Viabilityd Hoechste

Donor 1 Homoharringtonine Antineoplastic 100 3.0 5.4 70 0.6 0.5

Epigallocatechin gallate Flavonoid 100 8.3 4.1 57 1.3 2.0

Desipramine hydrochloride Antidepressant 100 1.6 6.3 58 0.8 0.3

Rifapentine Antibiotic 100 8.8 5.0 15 1.1 1.7

Hexachlorophene Antiseptic 100 6.9 4.2 5.5 1.0 1.6

Donor 2 Epigallocatechin gallate Flavonoid 100 42 32 25 1.1 1.4

Lomerizine dihydrochloride Antihypertensive 100 7.9 7.3 17 0.7 1.0

Meclizine hydrochloride Antihistamine 100 2.6 2.5 17 0.9 1.1

Docetaxel Antineoplastic 13 1.9 2.6 9.2 1.0 0.6

Rifapentine Antibiotic 100 5.7 3.4 3.5 1.0 1.7
aTE FCs were calculated from triplicate averages of EGFP positive cell-counts normalized to Hoechst-counts, relative to the same measurement averaged from the
VCs in each compound’s respective plate
bGFP FCs were calculated from triplicate averages of EGFP positive cell-counts, relative to the same measurement averaged from the VCs in each compound’s
respective plate
cRLU/mg FCs were calculated from triplicate averages of luciferase luminescence, in relative light units (RLUs), normalized to total protein, relative to the same
measurement averaged from the VCs in each compound’s respective plate
dViability ratios were calculated from triplicate averages of live cell-counts (number of Hoechst stained objects minus number of ethidium stained objects)
normalized to Hoechst-counts, relative to the same measurement averaged from the VCs in each compound’s respective plate
eHoechst ratios were calculated from triplicate averages of total cell-count (determined by Hoechst-count), relative to the same measurement averaged from the
VCs in each compound’s respective plate

Table 3 Drug class average fold-changes for positive hits in each donor

Drug Class [total
hits]

Concentration
[μM]

# of hits Transfection FCa Hoechst FCb

D1 D2 D1 D2 D1 D2

Glucocorticoid [88] 100 13 7 5.2 3.1 1.3 1.2

13 11 14 4.6 2.7 1.2 1.3

1.7 10 17 5.0 2.8 1.3 1.2

0.2 5 11 4.1 2.4 1.2 1.2

Antibiotic [5] 100 2 1 4.6 2.2 1.3 1.0

13 0 1 N.A. 1.8 N.A. 1.1

1.7 0 0 N.A. N.A. N.A. N.A.

0.2 0 1 N.A. 1.7 N.A. 1.1

NSAID [3] 100 0 2 N.A. 2.4 N.A. 1.3

13 0 0 N.A. N.A. N.A. N.A.

1.7 1 0 2.7 N.A. 0.8 N.A.

0.2 0 0 N.A. N.A. N.A. N.A.

Antihypertensive [4] 100 0 3 N.A. 2.0 N.A. 1.2

13 0 1 N.A. 1.6 N.A. 0.9

1.7 0 0 N.A. N.A. N.A. N.A.

0.2 0 0 N.A. N.A. N.A. N.A.
aTransfection FCs were calculated by averaging transfection efficiency, EGFP cell-counts, and transgenic luciferase activity (RLU/mg) FC averages of hits from the
same cluster and concentration for each donor. Transfection efficiency FCs were calculated from triplicate averages of EGFP cell-counts normalized to Hoechst-
counts, relative to the same measurement averaged from the VCs in each compound’s respective plate. EGFP cell-count FCs were calculated from triplicate
averages of EGFP cell-counts, relative to the same measurement averaged from the VCs in each compound’s respective plate. RLU/mg FCs were calculated from
triplicate averages of luciferase luminescence, in relative light units (RLUs), normalized to total protein, relative to the same measurement averaged from the VCs
in each compound’s respective plate
bHoechst FCs of hits from the same cluster and concentration were averaged for each donor. Hoechst FCs were calculated from triplicate averages of total cell-
count (determined by Hoechst-count), relative to the same measurement averaged from the VCs in each compound’s respective plate
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with clobetasol propionate producing a 2.1 FC in transfec-
tion efficiency, a 2.5 FC in EGFP cell-count, and a 31 FC
in transgenic luciferase activity at 1.7 μM in D1 hAMSCs
(Table 1), with all FCs reported relative to the VC. Fur-
thermore, the glucocorticoid beclomethasone dipropio-
nate produced a 2.4 FC in transfection efficiency, a 2.9 FC
in EGFP cell-count, and a 6.9 FC in transgenic luciferase
activity at 13 μM in D2 hAMSCs (Table 1), with all FCs
reported relative to the VC.

Flavonoids and antineoplastic agents are potent
inhibitors of transfection in hAMSCs
The largest fold-changes in transfection efficiency and
EGFP cell-count produced in this screen of the NCC
was by the flavonoid epigallocatechin gallate (EGCG)
with a − 42 FC in transfection efficiency, a − 32 FC in
EGFP cell-count, and a − 25 FC in transgenic luciferase
activity at 100 μM in D2 hAMSCs (Table 2), as well as a
− 8.3 FC in transfection efficiency, a − 4.1 FC in EGFP
cell-count, and a − 57 FC in transgenic luciferase activity
at 100 μM in D1 hAMSCs (Table 2), with all FCs re-
ported relative to the VC.
Furthermore, antineoplastic agents were identified as a

potent negative transfection priming class with five com-
pounds decreasing transfection relative to the VC across

the two donors tested (homoharringtonine, 100 μM,
vinorelbine tartrate, 100 μM, imatinib mesylate, 13 μM,
podofilox, 1.7 μM, and busulfan, 1.7 μM in D1 hAMSCs,
and docetaxel, 100 and 13 μM in D2 hAMSCs) (Table 4).
Notably, the antineoplastic homoharringtonine produced
a − 70 FC in transgenic luciferase activity, relative to the
VC, at 100 μM in D1 hAMSCs and the antineoplastic
docetaxel produced a − 9.2 FC in transgenic luciferase
activity, relative to the VC, at 100 μM in D2 hAMSCs
(Table 2).

Antibiotics and antihypertensives produce both positive
and negative transfection priming effects in hAMSCs
Antibiotics and antihypertensives were two drug classes
identified that included compounds with both positive
and negative transfection priming capabilities. For in-
stance, three antibiotics (linezolid, 100 μM in D1
hAMSCs, trimethoprim, 0.2 μM in D2 hAMSCs, and
dapsone, 100 µM in D1 hAMSCs, and 100 and 13 μM in
D2 hAMSCs) and three antihypertensives (isradipine,
100 μM, hydroflumethiazide, 100 μM, and clonidine
hydrochloride, 100 and 13 μM in D2 hAMSCs) increased
transfection by as much as 4.6-fold (Table 3), relative to
the VC, while seven antibiotics (demeclocycline, 100 μM,
cefixime trihydrate, 100 μM, and rifabutin, 100 μM in D1

Table 4 Drug class average fold-changes for negative hits in each donor

Drug Class [total
hits]

Concentration
[μM]

# of hits Transfection FCa Hoechst FCb

D1 D2 D1 D2 D1 D2

Flavonoid [3] 100 1 2 −23 -18 2.0 1.1

13 0 0 N.A. N.A. N.A. N.A.

1.7 0 0 N.A. N.A. N.A. N.A.

0.2 0 0 N.A. N.A. N.A. N.A.

Antineoplastic [7] 100 2 1 −14 -2.7 0.9 0.5

13 1 1 −2.4 -4.6 0.9 0.6

1.7 2 0 −2.3 N.A. 0.9 N.A.

0.2 0 0 N.A. N.A. N.A. N.A.

Antibiotic [9] 100 4 4 − 5.8 -3.1 1.5 1.5

13 0 1 N.A. -2.9 N.A. 1.5

1.7 0 0 N.A. N.A. N.A. N.A.

0.2 0 0 N.A. N.A. N.A. N.A.

Antihypertensive [9] 100 3 4 − 3.3 -4.8 0.9 1.1

13 1 1 − 2.2 -1.8 1.2 1.5

1.7 0 0 N.A. N.A. N.A. N.A.

0.2 0 0 N.A. N.A. N.A. N.A.
aTransfection FCs were calculated by averaging transfection efficiency, EGFP cell-counts, and transgenic luciferase activity (RLU/mg) FC averages of hits from the
same cluster and concentration for each donor. Transfection efficiency FCs were calculated from triplicate averages of EGFP cell-counts normalized to Hoechst-
counts, relative to the same measurement averaged from the VCs in each compound’s respective plate. EGFP cell count FCs were calculated from triplicate
averages of EGFP cell-counts, relative to the same measurement averaged from the VCs in each compound’s respective plate. RLU/mg FCs were calculated from
triplicate averages of luciferase luminescence, in relative light units (RLUs), normalized to total protein, relative to the same measurement averaged from the VCs
in each compound’s respective plate
bHoechst FCs of hits from the same cluster and concentration were averaged for each donor. Hoechst FCs were calculated from triplicate averages of total cell-
count (determined by Hoechst-count), relative to the same measurement averaged from the VCs in each compound’s respective plate
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hAMSCs, rolitetracycline, 100 μM, tetracycline, 100 μM,
and clarithromycin, 100 μM in D2 hAMSCs, and rifa-
pentine, 100 μM in D1 and D2 hAMSCs, and 13 μM in
D2 hAMSCs) and six antihypertensives (latanoprost, 100
and 13 μM in D1 hAMSCs, olmesartan medoxomil,
100 μM, doxazosin, 100 μM, and amlodipine, 13 μM in
D2 hAMSCs, nicardipine hydrochloride, 100 μM in D1
and D2 hAMScs, and lomerizine dihydrochloride,
100 μM in D1 and D2 hAMSCs) decreased transfection
by as much as − 5.8-fold (Table 4), relative to the VC.
Furthermore, the antibiotic rifapentine produced a −

8.8 FC in transfection efficiency, a − 5.0 FC in EGFP cell-
count, and a − 15 FC in transgenic luciferase activity
while increasing the Hoechst-count by 1.7-fold at
100 μM in D1 hAMSCs (Table 2), with all FCs reported
relative to the VC. Similarly, rifapentine produced a − 5.7
FC in transfection efficiency, a − 3.4 FC in EGFP cell-
count, and a − 3.5 FC in transgenic luciferase activity
while increasing the Hoechst-count by 1.7-fold at
100 μM in D2 hAMSCs (Table 2), with all FCs reported
relative to the VC.

Identification of compounds that primed both donors of
hAMSCs
Finally, we identified compounds that have transfection
priming effects in multiple donors of hAMSCs by group-
ing compounds that hit (i.e. statistically significant trans-
fection efficiency FC and EGFP cell-count FC with a
transgenic luciferase FC of less than or equal to − 1.5
FC, or greater than or equal to 1.5 FC, with all FCs rela-
tive to the VC) at the same concentration in both donors
of hAMSCs. Our screen of the NCC identified 25

compounds that can prime lipid-mediated transfection
in two donors of hAMSCs, with 18 compounds signifi-
cantly increasing transfection and seven compounds sig-
nificantly decreasing transfection compared to the VC
(Supplemental Data). Glucocorticoids were 13 of the 18
positive priming compounds and clobetasol propionate,
dexamethasone, triamcinolone acetonide, and fluoro-
metholone produced the largest FCs in transfection effi-
ciency, EGFP cell-count, and transgenic luciferase
activity, relative to the VC, of the 18 positive priming
compounds that primed transfection in both donors
(Table 5). Conversely, compounds that decreased trans-
fection in both donors were more diverse, with the fla-
vonoid EGCG, the antihypertensive lomerizine
dihydrochloride, the antibiotic rifapentine, the antiseptic
hexachlorophene, and the cholinergic agent galantha-
mine hydrobromide producing the largest fold-decreases
in transfection efficiency, EGFP cell-count, and trans-
genic luciferase activity relative to the VC (Table 5) in
both donors.

Discussion
An efficient nonviral gene delivery system for ex vivo
genetic modification of clinically relevant hMSCs is lack-
ing, however, our lab has previously demonstrated that
pharmacological priming, or the addition of compounds
to the culture media to modulate the cellular response
to transfection, is a simple and effective method to en-
hance transfection in multiple cell types [15–17, 23–26].
The idea of priming was developed after our studies
using microarray analysis of transfected versus treated,
but untransfected cells, where differentially expressed

Table 5 Top 10 overall transfection priming hits

Drug Drug Class Concentration [μM] TEa EGFPb RLU/mgc Viabilityd Hoechste

Clobetasol propionate Glucocorticoid 1.7 2.6 2.5 18 1.1 1.0

Dexamethasone Glucocorticoid 100 2.0 2.4 17 1.1 1.3

Triamcinolone acetonide Glucocorticoid 100 2.0 2.5 13 1.1 1.4

Fluorometholone Glucocorticoid 100 3.2 3.6 9.5 1.0 1.1

Triamcinolone acetonide Glucocorticoid 1.7 2.8 2.9 8.5 1.0 1.1

Epigallocatechin gallate Flavonoid 100 −25 −18 −41 1.2 1.7

Lomerizine dihydrochloride Antihypertensive 100 −5.0 −5.7 −11 0.9 0.8

Rifapentine Antibiotic 100 −7.2 −4.2 −9.5 1.1 1.7

Hexachlorophene Antiseptic 100 −5.0 −3.4 −3.6 0.9 1.4

Galanthamine hydrobromide Cholinergic Agent 100 −2.0 −1.8 −6.9 1.2 1.2
aTE FCs were calculated from triplicate averages of EGFP positive cell-counts normalized to Hoechst-counts, relative to the same measurement averaged from the
VCs in each compound’s respective plate
bEGFP FCs were calculated from triplicate averages of EGFP positive cell-counts, relative to the same measurement averaged from the VCs in each compound’s
respective plate
cRLU/mg FCs were calculated from triplicate averages of luciferase luminescence, in relative light units (RLUs), normalized to total protein, relative to the same
measurement averaged from the VCs in each compound’s respective plate
dViability ratios were calculated from triplicate averages of live cell-counts (number of Hoechst stained objects minus number of ethidium stained objects)
normalized to Hoechst-counts, relative to the same measurement averaged from the VCs in each compound’s respective plate
eHoechst ratios were calculated from triplicate averages of total cell-count (determined by Hoechst-count), relative to the same measurement averaged from the
VCs in each compound’s respective plate
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endogenous genes were identified between each condi-
tion in HEK 293 T cells and the expression of these
identified genes were perturbed pharmacologically (i.e.
primed) in order to gain insight into the role of en-
dogenous molecular factors in the transfection process
[23–26]. Furthermore, our lab sought to expand our
transfection priming library by screening the National
Institutes of Health Clinical Collection (NCC), a collec-
tion of over 700 small molecules made available for drug
repurposing [21], for compounds that could prime
polymer-mediated transfection to HEK 293 T cells [17].
Our previous screen of the NCC on HEK 293 T cells
identified hundreds of compounds that could signifi-
cantly modulate transfection in HEK 293 T cells com-
pared to the VC, with identified priming compounds
potentially modulating transfection by modulating mito-
chondrial dysfunction, oxidative stress, and cell death
processes associated with polymer-mediated transfection
[17, 27]. This previous screen of the NCC was a proof of
principle that compounds from diverse drug classes
could be screened for transfection priming effects and
that these compounds could be placed into meaningful
context as they relate to the nonviral gene delivery
process. Therefore, in this current study, we followed a
similar approach in order to identify transfection prim-
ing compounds in clinically relevant hAMSCs, as well as
identify possible modes of action in order to gain a bet-
ter understanding of the mechanisms involved in the
transfection priming process.
This study screened 707 compounds from the NCC on

hAMSCs from two human donors (D1 and D2) at four
concentrations (100, 13, 1.7, and 0.2 μM) for priming ef-
fects on transfection of a pEGFP-Luc plasmid expressing
a fusion protein of EGFP and luciferase using LF-3000
as the cationic carrier. This screen of the NCC identified
many compounds across all four concentrations and the
two donors tested that significantly modulated transfec-
tion efficiency or EGFP cell-count relative to the VC
(Fig. 1). Furthermore, drug clustering of compounds de-
termined to be hits indicated that certain drug classes
may be modulating the cellular response to lipid-
mediated transfection in hAMSCs, which includes gluco-
corticoids, flavonoids, antibiotics, and antihypertensives.

Glucocorticoids
Glucocorticoids were the majority of the compounds in
the NCC that were found to significantly affect transfec-
tion efficiency, EGFP cell-counts, and transgenic lucifer-
ase activity in both donors of hAMSCs compared to the
VC (Tables 1 and 3), thereby validating our previous
work showing significant enhancement of lipid-mediated
transfection in hMSCs by the glucocorticoid dexametha-
sone relative to a VC [15, 16]. Our lab has shown that
dexamethasone at 150 nM can enhance nonviral gene

delivery to hMSCs by binding to the glucocorticoid re-
ceptor (GR) [15]. Binding of the GR then rescues
transfection-induced cellular metabolic decline [15], pre-
vents transfection-mediated protein synthesis inhibition
[16], and inhibits apoptosis [16], allowing for increased
translation and expression of transgenic protein [15, 16]
while maintaining hMSCs differentiation potential [15].
Furthermore, the increase in translation and transgenic
protein expression mediated by glucocorticoid priming
was shown to be independent of nuclear pDNA internal-
ization [16], even though glucocorticoids have been
shown to alter nuclear membrane permeability [28–30]
and increase nuclear pDNA internalization when conju-
gated to the cationic carrier [31–33], suggesting that the
priming effect of dexamethasone is mediated by other
mechanisms, potentially by modulating endoplasmic
reticulum stress responses or upregulating genes that
modulate oxidative conditions, as others have shown
that dexamethasone can modulate these responses in
other cell types [34, 35].
The cellular responses we observed following gluco-

corticoid priming may be explained by the established
hierarchy of glucocorticoids, where glucocorticoids have
genomic (cytosolic receptor-mediated) effects at low
doses (i.e. nanomolar range), as well as nongenomic spe-
cific (membrane receptor-mediated) and unspecific
(nonreceptor-mediated) effects as the dose is increased
(i.e. micromolar range) [36]. Therefore, following the
established hierarchy, glucocorticoids that hit in this
current screen at 0.2 μM may be binding the cytosolic
GR, thus inducing the GR to translocate to the nucleus
and modulate anti-inflammatory genes [37, 38]. These
anti-inflammatory genes could then rescue hMSCs from
transfection-induced inflammation and cytotoxicity,
leading to the observed increase in transgene produc-
tion. Furthermore, this screen demonstrated that gluco-
corticoids can also have potent priming effects at high
doses, suggesting that glucocorticoids at higher concen-
trations may be imparting additional nongenomic effects
[36], such as modulating mitochondrial function [39],
which our previous screen in HEK 293 T cells has sug-
gested may be key for modulating nonviral gene delivery
[17], or dilating nuclear pores [30], as others have shown
increased transfection efficiency when glucocorticoids
are conjugated to nonviral carriers [31–33]. However,
further investigations into the specific mechanism of
transfection enhancement seen in this screen with
higher concentrations of glucocorticoids are needed in
order to fully understand glucocorticoid priming in
hMSCs.

Flavonoids
While few flavonoids were identified as priming com-
pounds in this screen, the flavonoid EGCG, a negative
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priming compound, produced one of the largest fold-
changes in transfection of the entire screen (Tables 2
and 5), compared to the VC. EGCG was also identified
as a potent inhibitor of polymer mediated transfection in
our previous screen of the NCC in HEK 293 T cells [17].
While flavonoids generally have an antioxidant or anti-
inflammatory effect, the potent inhibition of transgene
expression by EGCG may be through other mechanisms
[40], as modulation of oxidative stress and inflammation
has been shown to enhance transfection [38, 41]. One
potential priming mechanism of EGCG may be through
EGCGs ability to inhibit the chaperon protein heat
shock protein 90 (HSP90) [42, 43]. HSP90 has been
shown to have an integral role in translocating antigens
from endosomes into the cytosol [44], thus, EGCG may
be inhibiting translocation of complexes from the endo-
some into the cytosol through inhibition of HSP90, lead-
ing to fewer plasmids in the cytosol and a decreased
probability of plasmid entry into the nucleus for tran-
scription and translation of the transgene. However, fu-
ture studies will be needed to elucidate EGCGs potent
negative transfection priming capabilities. In addition,
other flavonoids screened did significantly enhance
transfection compared to the VC, such as ipriflavone
(Supplemental Data). In this case, flavonoids may be en-
hancing transfection by inducing protective effects on
the mitochondria [45], as others have shown, and we
have suggested that modulation of mitochondrial func-
tion can enhance nonviral gene delivery to cells [17, 41].
However, the mechanisms behind the observed priming
effects by flavonoids needs further study.

Antibiotics
Our previous screen of the NCC on transfection in HEK
293 T cells identified many of the antibiotics tested to be
potent inhibitors of polymer-mediated transfection, with
the majority of those antibiotics belonging to the ceph-
alosporin- and tetracycline-class of antibiotics [17]. This
antibiotic-class dependent inhibition of transfection was
also observed in our current screen of the NCC in
hAMSCs, as most of the antibiotics that significantly de-
creased transfection in hAMSCs relative to the VC be-
long to the tetracycline- and rifamycin-classes of
antibiotics. Many transfection protocols recommend
transfecting cells in media without antibiotics [46–48] as
they are thought to decrease transfection and increase
cytotoxicity, however, data supporting such claims is
limited. It must be emphasized that transfection experi-
ments within this screen were carried out in media con-
taining antibiotics (1% penicillin G/streptomycin),
however, penicillin V and G were screened as a part of
the NCC and showed no priming effects on transfection
at the concentrations tested on either donor, with the
exception of penicillin V showing a slight increase in

transfection efficiency and EGFP cell-count (1.4 transfec-
tion efficiency FC and 1.4 EGFP cell-count FC) in D2
hAMSCs, relative to the VC.
The negative priming effects of antibiotics observed in

this screen could, in part, be due to the targeting of
mitochondria by some antibiotics in mammalian cells
[49–52]. Tetracyclines, which were potent inhibitors of
transfection in this screen, have been shown to inhibit
mitochondrial protein synthesis in eukaryotic cells, lead-
ing to inhibited mitochondrial functions [53]. Inhibition
of mitochondrial functions can lead to increased reactive
oxygen species [52] and decreased cell proliferation, es-
pecially in primary cells [50], all of which can have nega-
tive effects on cell viability and ultimately transfection in
hMSCs [15]. However, we observed increased Hoechst-
counts (i.e. increased proliferation) compared to the VC
by the negative transfection priming compound rifapen-
tine, which could be explained by the ability of antibi-
otics to decrease endocytosis and increase exocytosis in
mammalian cells [54]. The combined decrease in endo-
cytosis and increase in exocytosis could limit the cyto-
toxic effects of internalized lipoplexes, thus increasing
proliferation while also decreasing transfection, however,
the increased Hoechst-counts observed by rifapentine
needs further study in hAMSCs.
Conversely, there were some antibiotics that were shown

to significantly increase transfection in hAMSCs relative to
the VC, with dapsone producing the largest fold-increase in
transfection of the antibiotics (Supplemental Data) com-
pared to the VC. While dapsone has been used as an anti-
biotic, it has also been shown to have anti-inflammatory
effects through interactions with the G-protein linked to
chemoattractant receptors in neutrophils [55]. The positive
priming effects observed in this screen by dapsone could be
through reduction of inflammation, as reducing inflamma-
tion has been shown to increase transfection [38]. However,
the anti-inflammatory effects of dapsone needs further
study in hAMSCs.

Antihypertensives
Antihypertensives were a transfection priming drug class
identified in this screen to have both positive and nega-
tive transfection priming effects in hAMSCs. The ability
of antihypertensives to have both positive and negative
priming effects could be due to their ability to modulate
intracellular ion concentrations by blocking certain ion
channels [56], such as calcium channels, as intracellular
calcium levels have been shown to be important for cel-
lular protein synthesis [57], and we have shown that cel-
lular protein synthesis is crucial for enhanced
transfection in hMSCs [16]. For instance, lomerizine
dihydrochloride, which reduces hypertension by block-
ing calcium channels, produced one of the largest fold-
decreases in transgenic luciferase activity in both donors
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compared to the VC (Table 5). Alternatively, antihyper-
tensives may be modulating transfection in hAMSCs by
blocking certain signaling receptors, such as beta-
adrenergic or mineralocorticoid receptors [56], as these
receptors have been shown to play important roles in
modulating mitochondrial function and protein synthe-
sis [56, 58, 59], both of which have been shown to be
important for successful nonviral gene delivery [16, 41].
If antihypertensives are modulating transfection in
hAMSCs by blocking certain ion channels or receptors,
the observed antihypertensive transfection priming ef-
fects could suggest that modulation of the cellular status
as a whole (e.g. maintaining cellular homeostasis), may
be key for efficient transfection in hAMSCs, a response
which can be tuned through priming.

Conclusion
Our screen of the NCC is the first high-throughput and
drug-repurposing approach to identify nonviral gene de-
livery priming compounds in two donors of hAMSCs.
We identified many individual compounds from the
NCC that significantly increased transfection efficiency,
EGFP cell-counts, and transgenic luciferase activity FCs
in hAMSCs compared to a VC, while also identifying
hAMSC transfection priming drug classes, such as glu-
cocorticoids, antibiotics, NSAIDs, antihypertensives, fla-
vonoids, and antineoplastics. We have also proposed
possible mechanisms of actions for the most potent (i.e.
greatest overall FC in transfection) priming drugs, which
suggest that modulation of key cellular processes, such
as proliferation, mitochondrial function, and apoptosis,
are vital to transfection success in hAMSCs. These iden-
tified compounds, drug classes, and mechanisms of ac-
tions should be further verified and studied, through
dose optimization, effect on plasmid internalization, and
verification of endogenous gene expression, in order to
improve our understanding of pharmacological priming
and how to modulate the cellular response to transfec-
tion in order to develop efficient nonviral gene delivery
systems for ex vivo genetic modification of clinically
relevant hMSCs.

Materials and methods
Priming compounds
The National Institutes of Health Clinical Collection
(NCC), a collection of 707 FDA approved compounds
for drug repurposing [21], was supplied in nine, 96-well
plates diluted to 10 mM in 10 μl of dimethyl sulfoxide
(DMSO). Prior to the screen, NCC compounds were di-
luted in triplicate (n = 3 for each compound at each con-
centration) to 100, 13, 1.7, and 0.2 μM in hMSC media
(prepared as described below) in separate 96-well plates,
with 10 wells around the perimeter of each well plate re-
ceiving equal volumes of DMSO as a vehicle control

(VC), and subsequently stored at − 80 °C until needed
for priming, as described below. In order to reduce bias
in compound hit selection by compound well position
(edge wells versus wells in the middle of the plate), com-
pound well locations were moved between the two
rounds of the screen while VC (DMSO only) well loca-
tions remained the same.

Cell culture
Cryopreserved adipose-derived hMSCs (hAMSC) from
two human donors were purchased at passage two from
Lonza (Lonza, Walkersville, MD) and were used at pas-
sage six. hAMSCs were positive for CD13, CD29, CD44,
CD73, CD90, CD105, CD166, and negative for CD14,
CD31, CD45 cell surface markers. hAMSCs were pas-
saged and cultured in hMSC media, consisting of Mini-
mum Essential Medium Alpha (MEM Alpha) (Gibco,
Grand Island, NY) supplemented with 10% heat-
inactivated Fetal Bovine Serum (FBS) (Gibco), 6 mM L-
Glutamine (Gibco), and 1% Penicillin-Streptomycin
(Pen-Strep) (10,000 U/mL) (Gibco), and incubated at
37 °C with 5% CO2 until confluent. In order to keep pas-
sage number consistent across all 216 plates used to
screen all compounds in two donors, hAMSCs were ex-
panded and passaged in a manner that allowed for a T75
flask to be ready for seeding every day for 14 consecutive
days. At confluence, hMSC media was removed and cells
were washed with 1X phosphate-buffered saline (PBS)
prior to the addition of 0.25% trypsin-ethylenediamine
tetraacetic acid (EDTA) (Gibco) for cellular dissociation.
An equal volume of hMSC media was added and total
cellular suspension was removed for subsequent cell pel-
leting via centrifugation to remove trypsin-EDTA. Cells
were resuspended in warm hMSC media and counted
via trypan blue exclusion using a hemocytometer prior
to diluting in hMSC media for seeding, as described
next.
For seeding, hAMSCs were dissociated and counted,

as described above, and 100 μl of 2 × 104 cells/ml cell
suspension (2000 cells) was added to each well of eight,
clear bottom, black walled 96-well plates (Corning Life
Sciences, Corning, NY). Immediately following seeding,
plates were incubated at 37 °C and 5% CO2 and allowed
to culture for 48 h.

Priming and transfection
Forty-eight hours after seeding of hAMSCs into 96 well
plates as described above, culture media was removed
and 100 μl of warmed hMSC media containing diluted
drugs from the priming plates (prepared as described
above) were added to the plates containing seeded
hAMSCs. Primed plates (seeded hAMSCs with priming
compounds) were immediately placed in an incubator at
37 °C and 5% CO2 for 30 min prior to transfection. For
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transfection, pEGFP-Luc plasmid (Clontech, Mountain
View, CA), which encodes a fusion protein of enhanced
green fluorescent protein (EGFP) and firefly luciferase
(Luc) under direction of a cytomegalovirus (CMV) pro-
moter and containing simian virus 40 (SV40) enhancer,
was complexed with Lipofectamine® 3000 (LF-3000)
(Invitrogen, Carlsbad, CA) at a DNA:lipid ratio of 1:2 in
serum free Opti-MEM media (Invitrogen) following the
manufacturer’s protocol. Thirty minutes after compound
addition (as described above), 0.07 μg of LF-3000 com-
plexed pEGFP-Luc in 6.7 μl of Opti-MEM was delivered
to each well, and plates were briefly centrifuged to en-
sure mixing of lipoplexes with the hMSC media. Media
was removed 3 h after lipoplex addition to remove prim-
ing compounds and lipoplexes, and replaced with fresh,
warmed, hMSC media with no priming compounds or
VC.

Staining and high content imaging
Forty-eight hours after transfection, plates were stained
with Hoechst 33342 (Sigma-Aldrich, St. Louis, MO) and
ethidium homodimer (Santa Cruz Biotechnology, Dallas,
TX) to enable subsequent nuclei counts and viability as-
sessments, respectively. Staining solution consisted of
1 μg/ml of Hoechst and 0.09 μg/ml of ethidium homodi-
mer in hMSC media. After removing culture media from
the cells, 50 μl of staining solution was added to each
well, followed by incubation for 25 min at 37 °C and 5%
CO2. After incubation, staining solution was removed,
and wells were rinsed with 20 μl of 1X PBS by placing
on a multi-purpose rotator for 5 min, after which the
rinse was removed and 100 μl of 1X PBS was added to
each well for subsequent imaging.
Images of each well were acquired with a Cytation 1

Cell Imaging System (Biotek, Winooski, VT), equipped
with a laser autofocus cube and GFP (EGFP transgene
production), red fluorescent protein (RFP, viability via
ethidium homodimer), and DAPI (nuclei count via
Hoechst) filter cubes paired with 465 nm, 523 nm, and
365 nm LED cubes, respectively. Two images, spaced
150 μm apart vertically, were taken of each well for each
fluorescent channel, in addition to phase contrast im-
ages, using a 4x objective. Consistent fluorescence exci-
tation LED intensity and camera exposure settings were
used to allow for comparison of image intensities be-
tween wells in the same plate. After imaging, cells were
washed with PBS and lysed with 100 μl per well of 1X
reporter lysis buffer (Promega, Madison, WI) for subse-
quent luciferase assay (as described below).

Image analysis and hit selection
Gen5 software (Biotek) was used for image preprocess-
ing, deconvolution and object analysis. Object analysis
identified objects of interest in all channels by their

fluorescence intensity and size. DAPI, GFP, and RFP in-
tensity thresholds were set at 5000, 1000, and 3000 rela-
tive fluorescent units (RFU), respectively, and minimum
and maximum object size set at 12 and 50 (DAPI), 12
and 150 (GFP), and 10 and 50 μm (RFP), respectively.
Transfection efficiency was calculated by dividing

number of EGFP objects (cells producing transgene) by
number of DAPI objects (cell nuclei) in the same well.
Viability was calculated by dividing the difference be-
tween the DAPI objects (cell nuclei) and the RFP objects
(nuclei of dead cells) by the number of DAPI objects
(cell nuclei) in the same well. Transgene production was
quantified by total EGFP fluorescent intensity (total
transgene produced) divided by number of EGFP objects
(cells producing transgene) in the same well. Fold-
changes (FC) were calculated by dividing a transfection
measurement (transfection efficiency, number of EGFP
objects, Hoechst-count, etc.) by the median value of the
same measurement for the 10 VC wells.
In a similar manner to our previous screen of the

NCC [17], cytotoxicity filters were implemented to re-
move compounds that were toxic at the tested concen-
tration from further consideration in the hit selection
process. Compounds with Hoechst-count FCs less than
0.5, 0.6, 0.7, and 0.8 for 100, 13, 1.7, and 0.2 μM, respect-
ively, were removed from the screen. Higher (i.e. more
stringent) Hoechst-count FC cutoffs were selected for
lower concentrations of priming compounds as these
conditions contained lower well concentrations of each
compound as well as the DMSO vehicle, resulting in less
cytotoxicity.
Compounds that passed toxicity filters were consid-

ered for hit selection. Statistical analysis of filtered com-
pounds, as described below, was carried out against VCs
from each respective plate. Compounds were considered
hits if they met three criteria: 1. statistically significant
transfection efficiency FC; 2. statistically significant
EGFP cell-count FC; and 3. validated by transgenic lucif-
erase activity FC, as described below.

Hit validation
Compounds that were considered hits by imaging data
(criteria 1 and 2) were validated by quantifying trans-
genic luciferase activity levels by measuring luciferase lu-
minescence in relative light units (RLUs) with a
Luciferase Assay kit (Promega) and a luminometer
(Turner Designs, Sunnyvale, CA). RLUs were normalized
to total protein amount determined with a Pierce
bicinchoninic acid (BCA) colorimetric assay (Pierce,
Rockford, IL) using an Epoch plate reader (Biotek) to
measure absorbance at 562 nm. Hits were considered
validated if the RLU/mg of protein FC was greater than
or equal to 1.5, or less than or equal to − 1.5, relative to
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the RLU/mg of protein value of six randomly chosen
VCs in the same plate.

Statistics
In this study, we screened 707 drugs for priming effects
at four concentrations (100, 13, 1.7, 0.2 μM) in triplicate
wells (n = 3) on two donors (D1 and D2) of hAMSCs,
constituting 216, 96-well plates distributed over 28 days.
Prior to statistical analysis, fold-changes for each com-
pound were calculated by dividing the transfection
measurement (transfection efficiency, number of EGFP
objects, Hoechst-count, etc.) by the median value of the
same measurement for the 10 VC wells within the same
plate. Normalization to the median of the 10 VC values
was selected to reduce effects of outliers. In order to re-
duce potential positive fold-change bias in statistical
analysis, all imaging data fold-change values were log2
transformed prior to a one-way analysis of variance
(ANOVA) with Dunnett’s post hoc test. Statistical sig-
nificance was accepted for p-values less than 0.05. All
fold-change values are reported as the mean of triplicate
data for each compound, except where specified. All sta-
tistics were evaluated using Prism GraphPad software
(GraphPad Software, Inc., La Jolla, CA).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13036-020-00238-1.

Additional file 1: Supplemental Data. NCC Screen Fold Changes.
Excel spreadsheet containing all fold changes for Hoechst-count, viability,
transfection efficiency, EGFP cell-count, transgene production (imaging),
and luciferase activity for all compounds in both donors at all four con-
centrations. Compounds that were removed by toxicity filters at each
concentration are also listed.
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