

RESEARCH

Open Access

CRISPR/Cas9 mediated *T7 RNA polymerase* gene knock-in in *E. coli* BW25113 makes T7 expression system work efficiently

Changchuan Ye^{1,2}, Xi Chen³, Mengjie Yang⁴, Xiangfang Zeng^{1,2} and Shiyan Qiao^{1,2*}

Abstract

T7 Expression System is a common method of ensuring tight control and high-level induced expression. However, this system can only work in some bacterial strains in which the *T7 RNA Polymerase* gene resides in the chromosome. In this study, we successfully introduced a chromosomal copy of the *T7 RNA Polymerase* gene under control of the lacUV5 promoter into *Escherichia coli* BW25113. The T7 Expression System worked efficiently in this mutant strain named BW25113-T7. We demonstrated that this mutant strain could satisfactorily produce 5-Aminolevulinic Acid via C5 pathway. A final study was designed to enhance the controllability of T7 Expression System in this mutant strain by constructing a T7 Promoter Variants Library. These efforts advanced *E. coli* BW25113-T7 to be a practical host for future metabolic engineering efforts.

Keywords: E. coli, CRISPR/cas9, T7 Expression System, Fluorescent Protein, 5-Aminolevulinic Acid, promoter variants

Introduction

Metabolic engineering plays a critical part in bio-based production of fuels, chemicals and materials from biomass, and often involves integration of multiple genes to re-direct metabolic fluxes [1]. In recent years, biosynthesis techniques have attracted increased attention. As synthetic biology applications have grown in complexity, so too has the sophistication of available genetic and biochemical tools. For example, researchers started to produce antibiotic using microbial fermentation in the mid-20th century [2]. Currently, a dramatic change in the scope and complexity manufacturing processes within the space of synthetic biology has occurred. Thanks to development of genetic engineering, accomplishments have progressed from simple reconstitution of biosynthetic pathways in heterologous hosts to

¹State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, 100193 Beijing, China ²Beijing Key Laboratory of Bio-feed Additives, 100193 Beijing, China Full list of author information is available at the end of the article

ambitious refactoring efforts [3–5] that can produce high titers of medicinally relevant compounds (strictosamide, taxa-diene, etc.) [6, 7] or amino acids (L-valine, L-threonine, etc.) [8, 9]. Up to now, synthetic biologists have employed many tools to modify and reform bacterial strains to produce desired compounds. These tools include well-characterized sets of expression vectors [10], promoters for dynamic pathway control [11, 12], tunable protein degradation [13], and advanced methods for genome editing [14, 15].

Synthetic biologists prefer two organisms for expression and optimization of heterologous biosynthetic pathways: *Escherichia coli* and *Saccharomyces cerevisiae*. *E. coli* is the most widely used prokaryotic system that produces heterologous proteins for industrial production of bacterial metabolites by batch and fed-batch operations [16, 17]. *E. coli* is a gram-negative, facultative anaerobic and non-sporulating bacterium [18]. *E. coli* has been regarded as the workhorse of modern biotechnology in the microbial production of biofuels and biochemicals [19].

© The Author(s). 2021 **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, with http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

^{*} Correspondence: 87062@cau.edu.cn

To express heterologous proteins in *E. coli*, researchers have designed and developed a large number of expression vectors based on specific signals (such as promoters) that bacteria can recognize. One of the most frequently used expression systems is the T7 expression system. T7 is a kind of bacteriophage with highly efficient self-replication after infection of *E. coli*. Early transcription is initiated by T7 RNA polymerase which can strongly initiate transcription of other genes [20]. The T7 expression system has several advantages such as: T7 RNA polymerase can recognize the T7 promoter specifically and initiate transcription of downstream genes; the mRNA transcribed by the T7 expression system is stable and has a strong translational signal [20, 21].

To ensure the T7 expression system works in *E. coli*, researchers have integrated genes that code *T7 RNA polymerase* into the genome of some *E. coli* strains such as BL21(DE3) [20, 21]. However, there are still some *E. coli* strains which have special characteristics, but lack the *T7 RNA polymerase* gene. Consequently, it is of great significance to find a convenient tool to integrate a large gene (such as *T7 RNA polymerase* gene, more than 4 kb) into the bacterial genome. A possible solution is the CRISPR/ Cas9 system which has been developed for programmable and customizable genome engineering [22].

CRISPR/Cas is an RNA-guided system which enables site-specific induction of a double strand break (DSB) and programmable genome editing. CRISPR/Cas is an immune system in bacteria and archaea [23]. Because of modularization and easy handling, CRISPR/Cas9 was teria, streptomyces, Clostridium and so on [24]. Among CRISPR/Cas9 methods, recombineering based on λ -Red has been widely employed for genome manipulation [1], which necessitates an editing template donor DNA and three phage λ proteins: Exo, Bet and Gam [25]. Gam ases in bacteria) from degrading the linear donor DNA, while Exo exonuclease resects the double-stranded DNA (dsDNA) and Bet binds the single-stranded DNA (ssDNA) to promote annealing of ssDNA to homologous chromosomal sequences [26]. Although there are many reports of successful insertion, deletion and replacement some is still facing many challenges, such as high offtarget rates, difficulty in acquiring Donor DNA and finding a suitable insertion site [27]. In this study, we manage to integrate the T7 RNA polymerase gene into the chromosome of BW25113, which is a derivative of E. coli boratory strain that became the parent strain for the mately 4,000 single-gene deletion mutants [28, 29]. The strain and its derivatives are being used in countless laboratories for a variety of studies, including systematic phenotypic surveys [30] and synthetic biology efforts [31-33]. Subsequently, we test the efficiency of the T7 Expression System in this mutant strain to ensure that heterogeneous expression of protein occurs.

To make our findings more useful in metabolic engineering, we designed a library of T7-Lac promoter variants. Earlier studies indicated that the T7 promoter is composed of two functional domains: an upstream binding region from -17 to -5 and an initiation region from -4 to +6. The promoter variants library was based on T7-Lac promoter [34], and the mutants were concentrated on the binding region (Fig. 1). We tested the expression strength of these promoter variants library in BW25113-T7, which will be useful in characterizing a number of aspects of promoter functions in metabolic engineering.

Results

Int 1 (T7-RNAP) were cloned from E. coli BL21(DE3). By referring to successful introduction in BL21(DE3), we of the *ybhC* gene (318–735 bp). Both homologous arms ficiency of recombination [35]. The map of T7-RNAP integration in BW25113 in ideal condition is shown in Fig. 2 C. All plasmids used in this research will be listed in Table 1.

Construction of plasmids for CRISPR and preparation of linear Donor DNA

Plasmid pCas prepared by our lab harbored the temperature sensitive oriR101 with repA101ts for curing at 37 °C, kanamycin resistance gene (Kan^r), and the λ -Red operon encoding Gam, Bet, and Exo proteins under the control of arabinose-inducible promoter P_{araB} . This plasmid harbored *S. pyogenes*-derived *cas9* driven by endogenous promoters and small-guide RNA (sgRNA) guided to ori-p15a which is under the control of lac operator (Figure S1A).

Plasmid pTarget-ybhC was derived by targeting the pCRISPR crRNA region to the *E. coli* BW25113 *ybhC*

gene, which harbored Chloramphenicol resistance (Chl^r) and ori-p15a (Figure S1B).

Difficulty was acquiring the linear Donor DNA. The Donor DNA should contain the *T7 RNA Polymerase* gene and two homologous arms (HRL and HRR). The preparation of Donor DNA with high-fidelity was difficult as the *T7 RNA Polymerase* gene contains about 4.5 kb. In this research, we designed two intermediate cloning vectors for preparation of Donor DNA. We expected this approach would enhance efficiency of CRIS PR/Cas9-mediated homologous recombination.

Primers used for preparation of Donor DNA are shown in Table 2. First, Fragment A (contained the *ybhC* gene, HRR, and HRL) was cloned from the *E. coli* BW25113 genome by Primer ybhC-F and ybhC-R. Then

Fragment A was concatenated to pACYCD-Blank (p15a ori, Chl^r) to assemble a new plasmid: pACYCD-ybhC (Figure S2A and S2B). Next, T7-RNAP (Fragment B) was cloned from the *E. coli* BL21(DE3) genome by Primer RNAP-F and RNAP-R and then Fragment B was assembled with pACYCD-ybhC. Subsequently, linear Donor DNA could be cloned from this new plasmid named pACYCD-Donor (Figure S2C and S2D). Donor DNA was purified, sequenced and confirmed to be without any mutations or absences.

E. coli lacks the Non-Homologous End Joining (NHEJ) mechanism to survive DNA cleavage [36] so the most

Table 1 Strains and plasimds employed in this study

Strain or plasmid	Relevant characteristic(s)	Source and/or reference	
Strain			
Escherichia coli DH5a	F-,φ80dlacZ Δ M15, Δ (lacZYA -argF)U169, deoR , recA1 , endA1 ,hsdR17 (rK-, mK+), phoA, supE44 , λ-, thi-1, gyrA96 , relA1	TransGen, Beijing	
Escherichia coli BL21(DE3)	fhuA2 [lon] ompT gal (λ DE3) [dcm] Δ hsdS λ DE3 = λ sBamHlo Δ EcoRl-B int::(lacl::PlacUV5::T7 gene) i21 Δ nin5	TransGen, Beijing	
Escherichia coli BW25113	F-, DE(araD-araB)567, lacZ4787(del)::rrnB-3, LAM-, rph-1, DE(rhaD-rhaB)568, hsdR514	Laboratory stock	
Escherichia coli BW25113-T7	BW25113 int::(lacl::PlacUV5::T7 gene) Δ ybhC	This study	
Plasmids			
pACYCD-Blank	E. coli cloning vector (p15a ori; CmR)	Laboratory stock	
pACYCD-sYFP	pACYCD-Blank with sYFP gene, Lacl gene and T7-Lacl promoter	Laboratory stock	
pCas	pCas plasmid for CRISPR (temperature sensitive oriR101; KanR; the λ -Red operon under the control of arabinose-inducible promoter; <i>S. pyogenes</i> -derived cas9; sgRNA guided to ori-p15a under the control of lac operator)		
pTarget	plasmid for CRISPR (p15a ori; CmR; sgRNA)	Laboratory stock	
pTarget-ybhC	arget-ybhC plasmid for CRISPR (p15a ori; CmR; sgRNA guided to <i>ybhC</i> gene)		
pACYCD-ybhC	pACYCD-Blank with <i>ybhC</i> gene (Fragment A)	This study	
pACYCD-Donor DNA	pACYCD-Blank with Donor DNA	This study	
pACYCD-sYFP-17A (and so on)	pACYCD-sYFP with T7 Promoter Mutation Library (Single-base substitution mutation)	This study	
pET28b-ALA-LA	plasmid for biosyntheizing ALA (f1 ori; KanR; hemA; hemL; Lacl gene and T7-Lacl promoter)	Laboratory stock	
pET28b-ALA-LAR	plasmid for biosyntheizing ALA (f1 ori; KanR; <i>hemA</i> ; <i>hemL; RhtA</i> ; <i>Lacl</i> gene and T7-Lacl promoter)	Laboratory stock	

Table 2 Primer pairs for CRISPR/Cas9 induced Knock-In

Primer	Sequences (5'to3')	Base Number	Note
Primer F1	gcttgttggtacgcttctgccattcatccgcttattatcac	41	Positions in boldface type are homologous fragments designed for Takara
Primer R1	accgcggcgtgggtacctggcgttacccaacttaat	36	In-Fusion
Primer ybhC- F	tacccacgccgcggttattg	20	
Primer ybhC- R	aagcgtaccaacaagcgcca	20	
Primer F2	cttttcgtgcgcgcataacgttgttaatctgtacctggtc	40	Positions in boldface type are homologous fragments designed for Takara
Primer R2	tggtgtccgggatctgtatcgtttctggtcgcggcg	36	In-Fusion
Primer RNAP- F	cagatcccggacaccatcga	20	
Primer RNAP- R	atgcgcgcacgaaaagcatc	20	
Primer Donor-F	tacccacgccgcggttattg	20	
Primer Donor-R	aagcgtaccaacaagcgcca	20	
Primer N20-F	gttttagagctagaaatagcaagttaaaat	30	Embellished by 5'-phosphorylation
Primer N20-R	tctggaaacgaatcgtcagcactagtattatacctaggac	40	

 competent cells, pTarget-ybhC and Donor DNA were co-electroporated into cells (Fig. 3). The plate of cells after co-electroporating is shown in Figure S3.

To attest the integration into target locus, six bacterial colonies were selected for colony PCR (Figure S4). Primers for the test were Primer RNAP-R and Test-F (Table 2 and Table S1).

Growth characteristic of E. coli BW25113-T7

Growth of *E. coli* BW25113-T7 in different medium was examined to assess whether CRISPR/Cas9-mediated T7-RNAP Knock-In affected the metabolic characteristics of the bacteria.

Growth of E. coli BW25113-T7 was compared with E. cultured in standard M9 medium, special M9YE Yeast Extract and 10 g/L Glucose) or standard LB (Fig. 4 A). However, growth rate of E. coli BW25113 and BW25113-T7 were higher than strain BL21(DE3) in nu-similar between E. coli BW25113 and BW25113-T7 in these three types of medium (Fig. 4). These results indicated that induction of a chromosomal copy of the T7RNA Polymerase gene does not impact growth characteristics of E. coli BW25113-T7.

Efficiency of T7 expression system in BW25113-T7

 that this mutant strain did express heterologous proteins efficiently through the T7 Expression System.

The quantitative fluorescent signal was detected by a Multifunctional Microplate Detector (Table 3). The fluorescent signal in *E. coli* BW25113-T7 was detected as 5636, which was about 4 times greater than that in *E. coli* BL21(DE3) (Fig. 6 A). It means that expression strength of sYFP under control of T7-Lac promoter in BW25113-T7 was greater than BL21(DE3) (p < 0.001). These results revealed that the T7 expression system has an enhanced efficiency in *E. coli* BW25113-T7.

Production of 5-Aminolevulinic Acid via C5 pathway

5-Aminolevulinic Acid (ALA), a five-carbon amino tumor-localization and photodynamic therapy for various cancers [40-42]. ALA is also used as a selective biodegradable herbicide and insecticide in agricultural humans [43, 44]. Currently, biosynthesis of ALA has be-

genes, *hemA* and *hemL*. In this research, we used a similar process for ALA biosynthesis (Fig. 7). In our mutant strain, the key genes, *hemA* and *hemL*, were expressed efficiently and controlled by T7 Expression System.

Synthesis efficiency of ALA was compared among three strains of *E. coli*. After transferring pET28b-ALA-LA or pET28b-ALA-LAR (Fig. 7), cells were cultured in special M9YE medium. Genes, *hemA* and *hemL*, were over-expressed under control of T7-Lac promoter in expression vector pET28b-ALA-LA, while an ALA exporter gene *RhtA* was over-expressed additionally in expression vector pET28b-ALA-LAR. *RhtA* is classified as amino acid secondary transporters and capable of translocating a variety of amino acids and related compounds, such as dipeptide and amino acid analogs. As ALA has similar chemical structure to glycylglycine and its physical properties are close to native amino acids carrying uncharged side chains, amino acid exporters with wide substrate specificity such as *RhtA* was supposed to play roles in ALA export. *RhtA* encodes an inner membrane transporter, which is responsible for threonine and homoserine efflux transport.

After 24 h of fermentation, ALA concentration was determined (Table 4; Fig. 6B). Concentration of ALA in the fermentation broth of BW25113-T7 was 165.8 mg/L, which was similar to that of BL21(DE3) when *hemL* and *hemA* were over-expressed. However, both of these two bacterial strains had a higher production of ALA when *RhtA* was also over-expressed. After 24 h cultivation, a titer of ALA (891.9 mg/L) was achieved in BW25113-T7, which was significantly higher than that of BL21(DE3) (626.3 mg/L). Notably, efficiency of ALA metabolism

Strains	Plasmid	Expressed genes	Fluorescent signal
BW25113	pACYCD-sYFP	sYFP	63 ± 89
BW25113-T7	pACYCD-sYFP	sYFP	1402 ± 221
BL21(DE3)	pACYCD-sYFP	sYFP	5635 ± 43

Table 3 Expression of sYFP under control of T7-Lacl promoter in different bacterial strains

The results are the average of three individual experiments

Construction of the T7 Promoter Variants Library

different bacterial strains. The fluorescent signal was detected by Multimode Reader (read: 503, 540) and was normalized to the cell density (OD₆₀₀). (**B**) The biosynthesis of ALA (5-Aminolevulinic Acid) by T7 Expression System in different bacterial strains. These strains were cultured in Medium M9YE. All experiments were performed in triplicates. P values were calculated using Tukey's multiple comparisons test (*P < 0.05, **P < 0.01, ***P < 0.001)

Discussion

As a common strategy of high-level induced expression, T7 expression system can ensure tight control to make the gene to be expressed in a plasmid under the control of a T7 phage promoter. *T7 RNA polymerase* is highly selective for its own promoters, which do not occur naturally in *E. coli*. A relatively small amount of *T7 RNA polymerase* provided from a cloned copy of T7 gene is sufficient to direct high-level transcription from a T7 promoter in a multicopy plasmid [20]. Specific mRNAs produced by *T7 RNA polymerase* are relatively stable and can rapidly saturate the translational machinery of *E. coli*, so that the rate of protein synthesis from the mRNA will depend primarily on efficiency of its translation. When mRNA is efficiently translated, a target protein can accumulate to greater than 50 % of the total cell protein in three hours or less [20, 21].

To express heterologous proteins by the T7 Expression System, active *T7 RNA polymerase* was delivered to bacterial strains such as BL21(DE3) by induction of a chromosomal copy of *T7 RNA Polymerase* gene under control of the lacUV5 promoter (Fig. 2 A) [20, 21]. Expression plasmid vectors have been constructed to allow target genes to be placed under control of the T7-Lac promoter and to be expressed in bacteria strains which carry an inducible gene for *T7 RNA Polymerase* [34]. Transcription can be repressed strongly by *lac* repressor bound to an operator centered 15 base-pairs downstream from the RNA start. But, *T7 RNA polymerase* initiates transcription very actively from this T7-Lac

Table 4 ALA production in different bacterial strains expressing various related genes

Strains	Plasmid	Expressed genes	ALA accumulation (mg/L)
BW25113	pET28b-ALA-LA	hemA, hemL	
BW25113-T7	pET28b-ALA-LA	hemA, hemL	
BL21(DE3)	pET28b-ALA-LA	hemA, hemL	
BW25113	pET28b-ALA-LAR	hemA, hemL, RhtA	
BW25113-T7	pET28b-ALA-LAR	hemA, hemL, RhtA	
BL21(DE3)	pET28b-ALA-LAR	hemA, hemL, RhtA	

The results are the average of three individual experiments

However, only strains with the T7 RNA Polymerase gene can use the T7 Expression System for efficient and controllable protein expression. Some strains commonly used in metabolic engineering (such as *E. coli* BW25113) cannot utilize the T7 Expression System even though they may have some superior characteristics (a higher growth rate or lower level of enterotoxin) [48, 49]. In this study, the CRISPR/Cas9 system combined with the λ -Red homologous recombination repair system was used to complete the insertion of the T7 RNA Polymerase gene into the genome of *E. coli* BW25113. We found that induction of a chromosomal copy of the T7 RNA Polymerase gene did not affect growth characteristics strain for heterologous protein expression or gene overexpression.

 brought forth revolutionary changes in genomic research, including genome editing, regulation, and imaging [24, 50]. Despite Cas9's great potential for both research and therapeutics, improvements can still be made in its specificity, efficiency, and spatiotemporal control [51]. There are still some challenges of CRISPR/ target rate, difficult access for Donor DNA, and high mutation rate of knock-in fragments [24, 52]. Based on the principle of ensuring fidelity of the repair template plasmids (pACYCD-ybhC and pACYCD-Donor) to acquire Donor DNA with high fidelity. The large DNA (T7-RNAP, 5.4 kb) was inserted into the genome of E. coli BW25113, and this mutant strain was named BW25113-T7.

The working efficiency of the T7 expression system in *E. coli* BW25113-T7 was confirmed by Fluorescent-Protein-Based Reporter Gene System (Fig. 5). In this mutant strain, the T7 expression system expressed the sYFP fluorescent protein and the efficiency of protein expression was higher than that of BL21 (DE3) (Fig. 6 A). Therefore, *E. coli* BW25113-T7 might provide the ability to produce high titers of simple peptides by the T7 Expression System.

The advantage of this protein expression could also extend to metabolic engineering. We speculate that the T7 Expression System in *E. coli* BW25113-T7 has greater efficiency of expression efficiency than BL21(DE3). Thus, three genes overexpressed by T7 Expression System

Plasmid ^a	Px ^b	Consensus base ^c	 Relative promoter strength ^e	Standard error
pACYCD-sYFP	consensus		 1	
pACYCD-sYFP-17A	-17A	Т	1.12	0.07
pACYCD-sYFP-17C	-17C		0.92	0.01
pACYCD-sYFP-17G	-17G		 1.54	0.11
pACYCD-sYFP-16C	-16C	A	0.12	0.02
pACYCD-sYFP-16G	-16G		0.48	0.01
pACYCD-sYFP-16T	-16T		 1.54	0.13
pACYCD-sYFP-15C	-15C	A	0.10	0.00
pACYCD-sYFP-15G	-15G		0.16	0.00
pACYCD-sYFP-15T	-15T		1.26	0.09
pACYCD-sYFP-14A	-14A	Т	1.15	0.13
pACYCD-sYFP-14C	-14C		0.34	0.02
pACYCD-sYFP-14G	-14G		0.05	0.01
pACYCD-sYFP-13C	-13C	A	 0.78	0.08
pACYCD-sYFP-13G	-13G		1.26	0.16
pACYCD-sYFP-13T	-13T		 1.29	0.04
pACYCD-sYFP-12A	-12A	С	1.50	0.09
pACYCD-sYFP-12G	-12G		 1.78	0.17
pACYCD-sYFP-12T	-12T		1.34	0.13
pACYCD-sYFP-11A	-11A	G	 1.49	0.23
pACYCD-sYFP-11C	-11C		0.06	0.00
pACYCD-sYFP-11T	-11T		0.03	0.00
pACYCD-sYFP-10C	-10C	А	0.09	0.01
pACYCD-sYFP-10G	-10G		0.09	0.01
pACYCD-sYFP-10T	-10T		2.13	0.46
pACYCD-sYFP-9A	-9A	С	0.02	0.00
pACYCD-sYFP-9G	-9G		0.04	0.00
pACYCD-sYFP-9T	-9T		0.02	0.00
pACYCD-sYFP-8A	-8A	Т	0.03	0.01
pACYCD-sYFP-8C	-8C		0.03	0.01
pACYCD-sYFP-8G	-8G		0.18	0.01
pACYCD-sYFP-7A	-7A	С	0.02	0.01
pACYCD-sYFP-7G	-7G		0.04	0.01
pACYCD-sYFP-7T	-7T		0.05	0.00
pACYCD-sYFP-6C	-6C	A	0.12	0.02
pACYCD-sYFP-6G	-6G		1.56	0.04
pACYCD-sYFP-6T	-6T		0.53	0.08
pACYCD-sYFP-5A	-5A	С	0.03	0.01
pACYCD-sYFP-5G	-5G		1.47	0.08
pACYCD-sYFP-5T	-5T		0.04	0.01

Table 5 Utilization of T7 promoter variants

^aPlasmids in the pACYCD series were constructed in this work

^bPromoter variants are designated as P-nX, where n indicates the position in the promoter and X indicates the base in the non-template strand

 $^{\rm c}{\rm The}$ base in the non-template strand of the consensus promoter at the indicated position

^dNaturally occurring T7 RNA Polymerase class II promoters that contain the indicated substitution; all class II promoters have two or more substitutions

⁶Plasmid templates were transcribed as described in Fig. 11, and the products (Fluorescent signal) were measured by Synergy[™] HTX Multifunctional Microplate Detector The utilization of each mutant promoter was then expressed relative to that of the consensus promoter when it was present at the position of Px (hemA, hemL and RhtA) in BW25113-T7 were all expressed at higher levels than BL21(DE3). When key synthetase genes, *hemA* and *hemL*, were over-expressed by the T7 Expression System, there were no differences between BW25113-T7 and BL21 (DE3) in ALA production (Fig. 6B). This result is easily explained, as the accumulation of compounds is more closely related to the activity and quality than quantity of synthetase in metabolic engineering [10, 39, 53]. However, when the exporter gene, RhtA, was over-expressed in addition to hemA and hemL, production of ALA in BW25113-T7 was significantly higher than that of BL21(DE3) (Fig. 6B). Therefore, we speculate that rate of ALA export in the BW25113-T7 strain is higher than that of BL21 (DE3) due to greater expression of RhtA. As a result of accelerated ALA export, E. coli BW25113-T7 accumulated 42.4 % more than E. coli BL21(DE3) (Fig. 6B).

There are some disadvantages with the T7 Expression System. Due to the abnormally high activity of T7 polymerase, this inducible expression system is not the optimal choice for many applications in metabolic engineering. When the T7 Expression System was activated upon induction, a target protein can accumulate to greater than 50% of the total cell protein [20]. The high levels of protein expression would be a burden on cells, which leads to a negative impact on bacterial growth. Besides, synthetic biologists working in metabolic engineering are concentrated on activity and quality of synthetase not just quantity of synthetase [10, 39, 53]. Therefore, application of T7 Expression System still has some limitations in metabolic engineering. As an attempt to enhance controllability and practicability of the T7 Expression System in this mutant strain BW25113-T7 for metabolic engineering, we designed a series of ex-

The essence of this T7 Promoter Variants Library is a series of promoter variants obtained by single-base mutation of each of the 13 bases on the Binding Region of the T7-Lac promoter (Fig. 1). Characterization of this series of promoters was measured by Fluorescent-Protein-Based Reporter Gene System (Fig. 8; Table 5). Based on such a library of promoters, expression of targeted proteins can be adjusted in a controlled manner such that application of the T7 expression system can be extended. We can flexibly regulate expression of targeted proteins according to specific needs to obtain the best yield of metabolites. For example, when we desired a higher intensity expression of heterologous protein, the T7-Lac promoter can be replaced as a variant with a higher expression intensity.

In conclusion, the *T7 RNA Polymerase* gene was inserted into *E. coli* BW25113 genome by CRISPR/Cas9 to construct a new *E. coli* strain in this study. This mutant strain maintained the advantages the original strain (such as the rapid growth rate) and allowed for efficient and controllable protein expression using the T7 Expression System. Further study of constructing T7 Promoter Variants Library enhanced the application of this strain in synthetic biology and provided a technical basis for industrial production in the future. Accordingly, these efforts advanced *E. coli* BW25113-T7 to be a practical host for future metabolic engineering efforts.

Materials and methods

E. coli Strains

DH5 α (TransGen, Beijing) was used for cloning plasmid. BL21(DE3) (TransGen, Beijing) was used for cloning *T7 RNA polymerase* genes, *LacI* and *LacO* (T7-RNAP), from its chromosomal genome. BW25113 strains were used for CRISPR/Cas9-induced DSB and recombination. All *E. coli* strains were routinely cultured in standard LB medium when not mentioned otherwise.

Selection of integration site and design of homologous recombination

Sequence of T7-RNAP in BL21(DE3) genome and the integration site of BW25113 were both confirmed in NCBI. The function and detailed message of the *ybhC* gene was verified in NCBI and BioCyc Database. As the recognition site for sgRNA, N20 site directs the Cas9 protein to enable site-specific induction of a DSB. The N20 site was found by BROAD international design tool, which is available at: http://www.broadinstitute.org/rnai/public/analysis-tools/sgrna-design.

Plasmids Construction for CRISPR and preparation of linear Donor dsDNA by PCR

Table 2 contains all primer pairs we designed for gene cloning and intermediate plasmid construction. Plasmid pCas (Figure S1A) and pTarget were prepared in our laboratory. Plasmid pTarget-ybhC was constructed by Inverse-PCR and T4-Ligation (T4 DNA Ligase, NEB, England) to replace the N20 fragment (Figure S1B) with specific primers (Table 2). Plasmid pACYCD-ybhC and pACYCD-Donor were both constructed for preparing

Donor DNA (Figure S2) by In-Fusion[®] HD Cloning Kit (Takara, Japan). Donor DNA was cloned from pACYCD-Donor by Hi-Fi PCR (Phusion[®] High-Fidelity PCR Master Mix, NEB, England).

All plasmids used in this research will be listed in Table 1.

Electroporation, Cell Recovery, and Plating

For transformation, the plasmid or linear DNA were electroporated into competent cells in the pre-chilled cuvette (0.1 cm) using Bio-Rad MicroPulser (1.8 kV, time constant > 5.0 ms). For selection, 25 μ g/mL chloramphenicol (Chl) or 50 μ g/mL kanamycin (Kan) were used alone or in combination. For induction of λ -Red proteins and lac operator, 1 mM arabinose and 1 mM IPTG were used.

To prepare cells harboring pCas, cells cultured at 37° C (OD₆₀₀ = 0.45–0.55) were made competent, mixed with pCas (100 ng) and subjected to electroporation, after which the cells were recovered in SOC medium (1 mL) for 1 h at 30°C, plated onto the Kan plate, and cultured at 30 °C for 18–24 h.

For CRISPR/Cas9-mediated homologous recombination, cells harboring pCas were cultured at 30°C in medium containing Kan and Arabinose and made competent. After co-electroporation of Donor DNA (400 ng) with pTarget-ybhC (100 ng), cells were recovered in SOC (1 mL) medium for 1 h at 30°C, plated onto Chl/ Kan plate, and cultured at 30°C for 18–24 h.

For elimination of pTarget-ybhC, cells harboring both pCas and pTarget were cultured at 30° C in medium containing Kan and IPTG for 2 h. Cells were plated onto Kan plates and cultured at 30° C for 18–24 h.

For elimination of pCas, cells harboring pCas were cultured at 37° C in the medium without any antibiotic for 12–16 h. Then the cells were plated onto non-antibiotic plates and cultured at 37° C for 12–16 h.

Verification of Gene Integration by Colony PCR and DNAseq

To verify correct integration of T7-RNAP, we designed Primer Seq-F and Primer Seq-R as shown in Table S1. Primer Seq-F targeted downstream of the *ybhC* gene (1267–1288 bp), while Primer Seq-R targeted upstream of the *ybhC* gene (261–282 bp). If integration was successful, colony PCR of the recombinants would yield a \approx 5 kb amplicon, which contains HRL, T7-RNAP and HRR. Absences or mutations of the integration fragment were verified by DNA-sequencing.

All DNA-sequencing for this research was conducted by Beijing Ruibio BioTech Co., Ltd (China, Beijing).

Growth of bacteria in different medium

All *E. coli* strains were grown at 37 °C in conical flask (250 mL) containing M9 medium (100 mL), M9YE medium or LB medium with chloramphenicol (25 μ g/mL). Growth was measured by monitoring optical density at 600 nm (OD₆₀₀) using a spectrophotometer.

Confirmation of T7 Expression System in BW25113-T7 by sYFP Reporter Gene System

Efficiency of the T7 expression system was confirmed by a fluorescent protein reporter assay system. The plasmid was named as pACYCD-sYFP, which harbored ori-p15a, Chloramphenicol resistance (Chl^r), LacI gene, T7-Lac promoter [34] and sYFP gene (Figure S5). This fluorescent protein could reflect 540 nm light by the 503 nm exciting light. This optical signal could be observed microscopically by Confocal Microscopy and accurately detected by a Fluorescence Detector. This plasmid was transformed into *E. coli* BL21(DE3) (as Positive Control), *E. coli* BW25113 (as Negative Control) and *E. coli* BW25113-T7.

Confocal Microscopy

Cells harboring pACYCD-sYFP were cultured at 37° C for 2 h. Then IPTG with a final concentration of 1 mM was added to the induced group. The bacterium solution was observed under Confocal Microscopy after 4 h of induction.

All strains were prepared for Confocal Microscopy as stated above for fluorescence measurements and prepared as a wet mount. Confocal microscopy was performed using a Leica TCS SP2 inverted confocal microscope (Leica Microsystems, Wetzlar, Germany) equipped with a 63× water-corrected objective in multitrack mode. Collected images were analyzed with the Leica Application Suite for Advanced Fluorescence (LAS AF, version 2.35) software (Leica Microsystem).

Fluorescence intensity measured by Multifunctional Microplate Detector

Cells harboring pACYCD-sYFP were cultured in LB containing Chl at 37°C for 2 h. Then IPTG with a final concentration of 1 mM was added to the induced group. The fermented liquid was added to a 96 well plate after 4 h of induction, then accurate fluorescent data was detected by Synergy[™] HTX Multifunctional Microplate Detector (BioTek Instruments, America). The excitation light was set as 503 nm and the receiving light was set as 540 nm. Collected data was analyzed with the Gen5[™] V2 Data Analysis Software (BioTek Instruments, Inc.).

Analytical procedures of ALA production

Cells harboring pET28b-ALA-LA or pET28b-ALA-LAR were cultured in M9YE containing Kan at 37° C for 2 h.

Then IPTG with a final concentration of 0.1 mM was added to the induced group. To analyze ALA production, culture (30 mL) after induction for 24 h was centrifuged (12,000 g for 2 min at 4° C). The supernatant was used for extracellular ALA analysis. ALA concentration was analyzed using modified Ehrlich's reagent [54]. Specifically, 2 ml of standard or sample (after diluted) was mixed with 1 ml 1.0 M sodium acetate (pH 4.6) in a cuvette, and 0.5 ml acetylacetone (2,4-pentanedi-one) was added to each cuvette. Then the mixtures were heated at 100 °C for 15 min. After cooling for 15 min, 1 ml of the reaction mixture and 1 ml freshly prepared modified Ehrlich's reagent were mixed together. After 30 min, the absorbance at 554 nm was measured. Standard plot for ALA measurement is shown in Figure S7.

Construction of the T7 Promoter Variants Library

Plasmid pTarget-ybhC was constructed by inverse PCR and T4-Ligation (T4 DNA Ligase, NEB, England) to make the single-base substitution mutation (Figure S5). The primers used are listed in Table S2. The plasmids were all sequenced to ensure that the single-base substitution mutation was introduced.

Data Analysis

Data for fluorescence intensity were subjected to analysis of variance (ANOVA) by GraphPad Prism (version 7.00). The quantitative fluorescent data was normalized to the cell density (OD_{600}). Error bars indicate standard error of the mean (SEM). P values were calculated using Tukey's multiple comparisons test (*P < 0.05, **P < 0.01, ***P < 0.001).

Abbreviations

E. coli: Escherichia coli; DSB: Double strand break; dsDNA: Double-stranded DNA; ssDNA: Single-stranded DNA; T7-RNAP: *T7 RNA polymerase* gene; *Lacl* gene: *Lacl Operator* and *Int* 1; HRL: Left homologous arm; HRR: Right homologous arm; Kan^r: Kanamycin resistance gene; sgRNA: Small-guide RNA; Chl^r: Chloramphenicol resistance; NHEJ: Non-Homologous End Joining; ALA: 5-Aminolevulinic Acid

Supplementary Information

Additional file 1: Figure S1. Map of plasmids which were constructed for CRISPR. A) Map of pCas, which harbored the temperature sensitive oriR101 with repA101ts, kanamycin resistance gene, the λ -Red operon encoding Gam, Bet, and Exo proteins under the control of arabinoseinducible promoter ParaB, *S. pyogenes*-derived cas9 driven by endogenous promoters and sgRNA guided to ori-p15a which is under the control of lac operator. **B**) Map of pTarget-ybhC, which harbored Chloramphenicol resistance, ori-p15a and sgRNA guided to *E. coli* BW25113 ybhC gene.

Additional file 2: Figure S2. Construct of intermediate cloning vectors for preparing Donor DNA. A) Fragment A cloned from BW25113 was concatenated to pACYCD-Blank to assemble pACYCD-ybhC. B) Fragment B cloned from BL21(DE3) was concatenated to pACYCD-ybhC to assemble pACYCD-Donor. C) Map of pACYCD-Donor. D) The map of Donor DNA, which contains HRL, T7-RNAP and HRR.

Additional file 3: Figure S3. Confirmation of CRISPR/Cas9-mediated DSB in E. coli BW25113. The macroscopic images of colony formation after co-electroporation of Donor DNA and pTarget-ybhC.

Additional file 4: Figure S4.Detection of successful RNAP Knock in clones of BW25113-T7. A) The location of colony PCR product in BW25113-T7 genome. B) Lane M, 1kb Plus DNA ladder (TransGen, Beijing); lanes 1 was blank; lanes 2 to 8 were samples of colony PCR; lanes 8 and 9, positive control and negative control, respectively.

Additional file 5: Figure S5.Map of pACYCD-sYFP. A) Sequence of T7-Lacl promoter. B) Map of T7-Lacl promoter. C) Map of pACYCD-sYFP (p15a ori; CmR; lacl; Lac operator and T7 promoter; sYFP).

Additional file 6: Figure S6. Characterization of T7 RNAP promoter variants: Relative activity of promoter variants (From Strongest to Weakest). Promoter variants were identified by referring to the base in the non-template strand of the DNA (e.g., a -17A promoter). The height of each bar indicates the activity of each promoter relative to that of the consensus promoter (data are from Table 5). All experiments were performed in triplicates.

Additional file 7: Figure S7.Standard Plot for ALA measurement.x: the absorbance at 554 nm; y: ALA concentration of sample after diluted (mg/ I)

Additional file 8. Additional file 9. Additional file 10.

Acknowledgements

Not applicable.

Authors' contributions

Qiao and Ye designed the study, wrote and edited the manuscript. Ye conducted all experiments of this study. Ye, Chen and Yang performed experiments and analyzed experimental results. Qiao and Zeng supervised the study. All authors read and approved the final manuscript.

Funding

The work presented in this manuscript was supported by Beijing Swine Innovation Team of Modern Agriculture Industry Technological System.

Availability of data and materials

The majority of data generated or analyzed during this study are included in this published article or in the supplementary information. The data not shown in the manuscript are available upon request from the corresponding author.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

The content of the manuscript has been approved by all authors.

Competing interests

The authors declare that they have no competing interests.

Author details

¹State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, 100193 Beijing, China. ²Beijing Key Laboratory of Bio-feed Additives, 100193 Beijing, China. ³State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, 100193 Beijing, China. ⁴National Feed Engineering Technology Research Centre, 100193 Beijing, China.

Received: 19 March 2021 Accepted: 7 June 2021 Published online: 12 August 2021

References

- Song CW, Lee J, Lee SY. Genome engineering and gene expression control for bacterial strain development. Biotechnol J. 2015;10:56–68.
- Baneyx F. Recombinant protein expression in *Escherichia coli*. Curr Opin Biotechnol. 1999;10:411–21.
- Yamanaka K, Reynolds KA, Kersten RD, Ryan KS, Gonzalez DJ, Nizet V, Dorrestein PC, Moore BS. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proc Natl Acad Sci U S A. 2014;111:1957–62.
- Temme K, Zhao D, Voigt CA. Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc Natl Acad Sci U S A. 2012;109:7085–90.
- Brown S, Clastre M, Courdavault V, O'Connor SE. De novo production of the plant-derived alkaloid strictosidine in yeast. Proc Natl Acad Sci U S A. 2015; 112:3205–10.
- Soliman S, Tang Y. Natural and engineered production of taxadiene with taxadiene synthase. Biotechnol Bioeng. 2015;112:229–35.
- Park JH, Lee KH, Kim TY, Lee SY. Metabolic engineering of *Escherichia coli* for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A. 2007;104:7797–802.
- Lee KH, Park JH, Kim TY, Kim HU, Lee SY. Systems metabolic engineering of Escherichia coli for L-threonine production. Mol Syst Biol. 2007;3:149.
- Dahl RH, Zhang F, Alonso-Gutierrez J, Baidoo E, Batth TS, Redding-Johanson AM, Petzold CJ, Mukhopadhyay A, Lee TS, Adams PD, Keasling JD. Engineering dynamic pathway regulation using stress-response promoters. Nat Biotechnol. 2013;31:1039–46.
- 13. Cameron DE, Collins JJ. Tunable protein degradation in bacteria. Nat Biotechnol. 2014;32:1276–81.
- Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM. Programming cells by multiplex genome engineering and accelerated evolution. Nature. 2009;460:894–8.
- 15. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157:1262–78.
- Lee SY. High cell-density culture of *Escherichia coli*. Trends Biotechnol. 1996; 14:98–105.
- 17. Yee L, Blanch HW. Recombinant protein expression in high cell density fedbatch cultures of *Escherichia coli*. Biotechnology. 1992;10:1550–6.
- Singleton P. Bacteria in biology, biotechnology and medicine. 1999;5 ed, vol 157. Wiley.
- Himmel ME, Karplus PA, Sakon J, Adney WS, Baker JO, Thomas SR. Polysaccharide hydrolase folds diversity of structure and convergence of function. Appl Biochem Biotechnol. 1997;63–65:315–25.
- Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990; 185:60–89.
- Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010;327:167–70.
- Chung ME, Yeh IH, Sung LY, Wu MY, Chao YP, Ng IS, Hu YC. Enhanced integration of large DNA into *E. coli* chromosome by CRISPR/Cas9. Biotechnol bioeng. 2017;114:172–83.
- Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL. An efficient recombination system for chromosome engineering in *Escherichia coli*. Proc Natl Acad Sci U S A. 2000;97:5978–83.
- Court DL, Sawitzke JA, Thomason LC. Genetic engineering using homologous recombination. Annu Rev Genet. 2002;36:361–88.

- 27. Wang H, La Russa M, Qi LS. CRISPR Cas9 in genome editing and beyond. Annu Rev Biochem. 2016;85:227–64.
- Yamamoto N, Nakahigashi K, Nakamichi T, Yoshino M, Takai Y, Touda Y, Furubayashi A, Kinjyo S, Dose H, Hasegawa M, Datsenko KA, Nakayashiki T, Tomita M, Wanner BL, Mori H. Update on the Keio collection of *Escherichia coli* single-gene deletion mutants. Mol Syst Biol. 2009;5:335.
- Nichols RJ, Sen S, Choo YJ, Beltrao P, Zietek M, Chaba R, Lee S, Kazmierczak KM, Lee KJ, Wong A, Shales M, Lovett S, Winkler ME, Krogan NJ, Typas A, Gross CA. Phenotypic landscape of a bacterial cell. 2011;144:143–56.
- Mutalik VK, Guimaraes JC, Cambray G, Lam C, Christoffersen MJ, Mai QA, Tran AB, Paull M, Keasling JD, Arkin AP, Endy D. Precise and reliable gene expression via standard transcription and translation initiation elements. Nat Methods. 2013;10:354–60.
- Cambray G, Guimaraes JC, Mutalik VK, Lam C, Mai QA, Thimmaiah T, Carothers JM, Arkin AP, Endy D. Measurement and modeling of intrinsic transcription terminators. Nucleic Acids Res. 2013;41:5139–48.
- Dubendorff JW, Studier FW. Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. J Mol Biol. 1991;219:45–59.
- Pyne ME, Moo-Young M, Chung DA, Chou CP. Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in *Escherichia coli*. Appl Environ Microbiol. 2015;81:5103–14.
- 36. Wilson TE, Topper LM, Palmbos PL. Non-homologous end-joining: bacteria join the chromosome breakdance. Trends Biochem Sci. 2003;28:62–6.
- Michel B. After 30 years of study, the bacterial SOS response still surprises us. PLoS Biol. 2005;3:e255.
- Kang Z, Wang Y, Gu P, Wang Q, Qi Q. Engineering *Escherichia coli* for efficient production of 5-aminolevulinic acid from glucose. Metab Eng. 2011;13:492–8.
- Bhowmick R, Girotti AW. Cytoprotective induction of nitric oxide synthase in a cellular model of 5-aminolevulinic acid-based photodynamic therapy. Free Radic Biol Med. 2010;48:1296–301.
- Mikolajewska P, Donnelly RF, Garland MJ, Morrow DI, Singh TR, Iani V, Moan J, Juzeniene A. Microneedle pre-treatment of human skin improves 5aminolevulininc acid (ALA) and 5-aminolevulinic acid methylester (MAL)induced PpIX production for topical photodynamic therapy without increase in pain or erythema. Pharm Res. 2010;27:2213–20.
- Sakamoto FH, Torezan L, Anderson RR. Photodynamic therapy for acne vulgaris: a critical review from basics to clinical practice: part II. Understanding parameters for acne treatment with photodynamic therapy. J Am Acad Dermatol. 2010;63:195–211.
- 43. Sasaki K, Watanabe M, Tanaka T, Tanaka T. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl Microbiol Biot. 2002;58:23–9.
- Edwards S, Jackson D, Reynoldson J, Shanley B. Neuropharmacology of δaminolaevulinic acid. II. Effect of chronic administration in mice. Neurosci Lett. 1984;50:169–73.
- Yang X, Li W, Palasuberniam P, Myers KA, Wang C, Chen B. Effects of silencing heme biosynthesis enzymes on 5-aminolevulinic acid-mediated protoporphyrin IX fluorescence and photodynamic therapy. Photochem Photobiol. 2015;91:923–30.
- Kannangara CG, Söll D, Gough S, Krupp G, Schön A, Berry-Lowe S. The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature. 1986;322:281–4.
- Lopez PJ, Guillerez J, Sousa R, Dreyfus M. On the mechanism of inhibition of phage T7 RNA polymerase by *lac* repressor. J Mol Biol. 1998;276:861–75.
- Maser A, Peebo K, Nahku R. Avoiding amino acid depletion in a complex medium results in improved *Escherichia coli* BW25113 growth. Microbiology. 2019;165:37–46.
- Maser A, Peebo K, Vilu R, Nahku R. Amino acids are key substrates to *Escherichia coli* BW25113 for achieving high specific growth rate. Res Microbiol. 2020;171:185–93.

- Khazen S, Molenaar C, Wiesmeijer K, Verwoerd NP, Eils R, Tanke HJ, Dirks RW. Visualizing telomere dynamics in living mammalian cells using PNA probes. EMBO J. 2003;22:6631–41.
- Peng R, Lin G, Li J. Potential pitfalls of CRISPR/Cas9-mediated genome editing. FEBS J. 2016;283:1218–31.
- Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat biotechnol. 2013;31: 827–32.
- Phelan RM, Sachs D, Petkiewicz SJ, Barajas JF, Blake-Hedges JM, Thompson MG, Reider Apel A, Rasor BJ, Katz L, Keasling JD. Development of next generation synthetic biology tools for use in *Streptomyces venezuelae*. ACS Synth Biol. 2017;6:159–66.
- Burnham BF. δ-Aminolevulinic acid synthase (*Rhodopseudomonas* sphaeroides). Methods Enzymol. 1970;17A:195–204.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

