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Abstract

Background: Porcine reproductive and respiratory syndrome respiratory sickness in weaned and growing pigs, as
well as sow reproductive failure, and its infection is regarded as one of the most serious swine illnesses worldwide.
Given the current lack of an effective treatment, in this study, we identified natural compounds capable of
inhibiting non-structural protein 4 (Nsp4) of the virus, which is involved in their replication and pathogenesis.

Results: We screened natural compounds (n = 97,999) obtained from the ZINC database against Nsp4 and selected
the top 10 compounds for analysing protein–ligand interactions and physicochemical properties. The five
compounds demonstrating strong binding affinity were then subjected to molecular dynamics simulations (100 ns)
and binding free energy calculations. Based on analysis, we identified four possible lead compounds that represent
potentially effective drug-like inhibitors.

Conclusions: These methods identified that these natural compounds are capable of inhibiting Nsp4 and possibly
effective as antiviral therapeutics against PRRSV.
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Introduction
Porcine reproductive and respiratory syndrome virus
(PRRSV) infection is an economically important disease
in swine and accountable for significant losses to the
pork industry worldwide [1]. PRRSV is an enveloped,
single-stranded RNA virus of the genus Arterivirus [1–4]
that causes respiratory disease and is responsible for se-
vere reproductive failure in pigs [4]. Generally, the dis-
ease is further complicated by secondary infection and
results in a high mortality rate [1]. The available treat-
ments, including vaccines, poorly control the disease,
owing to the high genetic and antigenic heterogeneity of

the virus [5]. Antivirals might be useful in controlling
and managing PRRSV, and recent studies have reported
the ability of herbal extracts to inhibit PRRSV infection
[6–8]. Many compounds derived from natural sources
such as plants have shown inhibitory activity against vi-
ruses and a wide variety of pathogens [9, 10]. Several
natural compounds have demonstrated antiviral activity
(for instance, immense potential for inhibiting viral rep-
lication) and drug-like activity [10]. The identification of
potent inhibitors of PRRSV from natural sources is chal-
lenging, as it requires compound extraction and evalu-
ation of antiviral activity, both of which require funds
and specific experimental equipment. Given the diffi-
culty in screening large numbers of natural compounds,
chemo-informatics approaches are useful for identifying
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lead compounds from databases by targeting essential
viral proteins [11, 12].
Open reading frame (ORF)1a and ORF1b comprise ~ 80%

of the PRRSV genome and respectively encode pp1a and
pp1b polyproteins that are cleaved by viral proteases into
non-structural proteins [13]. Papain-like proteases (PL1pro
and PL2pro) and a 3C-like serine protease [3CLSP; non-
structural protein 4 (Nsp4)] are the viral proteases involved
in polyprotein cleavage and required for Arterivirus replica-
tion. Additionally, the reported involvement of Nsp4 in inter-
feron inhibition is linked with PRRSV pathogenesis,
suggesting it as a promising molecular target for novel thera-
peutics [14–16].
The goal of this study was to identify natural com-

pounds capable of serving as novel inhibitors of PRRSV
replication via their targeting of Nsp4. Specifically, we
aimed to identify natural compounds through structure-
based virtual screening, analyse their physicochemical
properties, perform molecular dynamics (MD) simula-
tions, and determine the binding affinities of the potential
inhibitors using molecular mechanics Poisson–Boltzmann
surface area (MM-PBSA) methods.

Materials and methods
Retrieval and preparation of ligand structures
We retrieved 97,999 compounds from a subset of the ZINC
database housing natural compounds [17]. All natural com-
pounds were downloaded in the structure-data file format,
and these files were subsequently converted to AutoDock
PDBQT [Protein Data Bank (PDB), partial charge (Q), and
atom type (T)] files using OpenBabel software (https://
openbabel.org/wiki/Main_Page). These files were then used
for interaction studies with target protein through structure-
based virtual screening and molecular docking using Auto-
Dock vina [18–20].

Retrieval and preparation of the target protein structure
The crystal structure of PRRSV Nsp4 (PDB ID: 5Y4L) was
retrieved from RCSB-PDB and visualised and analysed using
UCSF Chimera-1.15 software [21, 22]. An AutoDock tool
was used for the addition of partial atomic charges (Kollman
charge), hydrogen atoms, generation of gridbox, and prepar-
ation of the Nsp4 structure. The grid box was generated with
centre (X =− 4.034, Y = 6.285, Z = 17.57) and size (X = 46,
Y = 44, Z = 42) coordinates that were defined in a configur-
ation file (exhaustiveness and energy ranges: 8 and 4, respect-
ively). The prepared structure was saved in the PDBQT file
format for molecular docking [23].

Structure-based virtual screening
Virtual screening is a computational method widely used
for the identification of lead molecules by docking large
numbers of compounds with a molecular target of inter-
est to allow evaluation of the binding free energy of the

docked/screened compounds using drug discovery pro-
grams [24]. AutoDock vina is a molecular docking and vir-
tual screening program that determines the preferred relative
orientation of a ligand during docking or interaction with a
molecular target and provides a stable protein–ligand com-
plex structure that exhibits a minimum binding energy [20].
Here, we used AutoDock vina to screen the retrieved natural
compounds against PRRSV Nsp4 and generated protein–lig-
and complexes of the top 10 screened compounds using
PyMol (https://pymol.org/2/). Two-dimensional (2D) models
of the complexes were visualised using Discovery Studio
Visualizer (https://discover.3ds.com/discovery-studio-
visualizer-download) to determine the amino acid residues
involved in the interactions [25].

Drug-likeness analysis
A total of seven principal descriptors were included to evalu-
ate the drug-likeness of the top 10 screened natural com-
pounds. These included molecular weight (MW), logP value,
status as a hydrogen-bond donor (HBD), and acceptor
(HBA), polar surface area (2D; PSA), polarizability (P), and
van der Waals surface area (VWSA). MW, logP, HBD, and
HBA were obtained from the ZINC database [17], whereas
PSA, P, and VWSA were calculated using the MarvinSketch
software (https://chemaxon.com/products/marvin).

MD simulation
The MD simulations were performed using GROMACS
(v.2018.1; http://www.gromacs.org/) for stability predic-
tions of the Nsp4–ligand complexes [26, 27]. Six systems
were generated and subjected to 100 ns MD simula-
tions—one system estimated the stability of Nsp4 and
the other five estimated the stability of the Nsp4–ligand
complexes. The dynamic nature of the target protein
and the docked-ligand complex was predicted in the
presence of a solvent. All six systems were solvated in a
box using a simple point-charge model. The topology of
the ligands was created using ProDRG [28] and that for
Nsp4 was generated using the GROMOS9653a6 force
field [29]. The systems were neutralised by adding 1 Na+

ion. To eliminate steric hindrance, the steepest energy
minimization was used for all systems in order to obtain
the maximal force below 1000 kJ/mol/nm. Long-range
electrostatic interactions were determined using the par-
ticle mesh Ewald (PME) method [30]. For computation
of Lennard–Jones and Coulomb interactions, we used a
radius cut-off of 1.0 nm; the LINCS algorithm was used
to constrain H-bond lengths [31]. All simulations ap-
plied a consistent time step of 2 fs. Short-range non-
bonded interactions were predicted using a 10-Å cut-off
distance, whereas long-range electrostatics were pre-
dicted using the PME method with 1.6-Å Fourier grid
spacing. Shake algorithms were used to fix all bonds, in-
cluding H-bonds [32]. After energy minimisation, the
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systems were equilibrated, followed by position-restraint
simulations under NVT and NPT conditions to maintain
the volume, temperature, and pressure. Finally, all systems
were subjected to a 100 ns MD simulation; coordinates
were saved at 2 fs intervals. Root-mean-square deviation
(RMSD), root-mean-square fluctuation (RMSF), radius of
gyration (Rg), solvent-accessible surface area (SASA), H-
bonds, and Gibbs free energy landscapes were calculated,
and principal component analysis (PCA) was performed
to predict correlated motions generated during protein–
ligand interactions;‘gmx rms’, ‘gmx rmsf’, ‘gmx gyrate’,
‘gmx sasa’, ‘gmx hbond’, ‘gmx sham’, and ‘gmx covar’
(GROMACSv.2018.1; http://www.gromacs.org/), respect-
ively, were used for these purposes. The resulting files
were analysed and visualised using xmgrace (https://
plasma-gate.weizmann.ac.il/Grace/).

Binding-energy calculation
MM-PBSA is a widely used and well-accepted method
for calculating the binding free energy of protein–ligand
complexes [33]. Here, we used the g_mmpbsa tool
(https://rashmikumari.github.io/g_mmpbsa/) to calculate
the binding energy by integrating high-throughput MD
simulation data [34]. The binding energy calculations
can be described in the following equation:

ΔGbind ¼ ΔGmm þ ΔGps þ ΔGnps - TΔS

Here, van der Waals and electrostatic interaction were
calculated in molecular mechanics energy (ΔGmm). ΔGps

and ΔGnps are the polar and non-polar solvation ener-
gies, and TΔS is refer to the entropic contribution where
temperature and entropy are denoted by T and S, re-
spectively. The average binding energies of the top five
protein–ligand complexes and amino acid residues con-
tributing to the binding activity were calculated by using
‘python’ scripts included in the g_mmpbsa tool.

Results
Identification of lead compounds through structure-based
virtual screening
Structure-based virtual screening enables the prediction
of optimal interactions between ligands and a macro-
molecular target for complex formation. The ligands are
subsequently sorted according to their binding free en-
ergy for the target. This requires the three-dimensional
structure of the target, with the compounds obtained
from a database and categorised according to their affin-
ity. In the present study, we downloaded a subset of nat-
ural compounds (n = 97,999) from the ZINC database
for virtual screening against PRRSV Nsp4. We subse-
quently identified the top 10 compounds sorted accord-
ing to their minimum binding free energy (range:− 10.0
to − 9.2 kcal/mol) for further analyses (Table 1).

Analysis and visualisation of the screened compounds
The active site residues of Nsp4 include His39, Asp64,
and Ser118, as well as His133 and Ser136 that are report-
edly essential for protein activity. The compound showing
the optimal binding free energy (− 10.0 kcal/mol;
ZINC38167083) demonstrated ligand interactions such as
His39-mediated van der Waals interactions and Asp64-
mediated Pi-anion interaction. Fig. 1 shows protein–ligand
H-bond interactions involving the active site residues
His39, Ser118, and Ser136, besides, Asp64 and His133 is
interacted with van der Waals and pi-anion interaction
with ZINC08877407. The interacting amino acid residues
of top 10 compounds are shown in Table 1.

Assessment of drug likeness through physicochemical
property analysis
Physicochemical property analysis is one of the fundamental
tasks in any drug discovery program. The top 10 screened
compounds were then subjected to analysis of their physico-
chemical properties according to 7 principal descriptors
(MW, logP value, status of HBDs and HBAs, 2D PSA, P, and
VWSA). According to a previous study, a good drug should
have an MW <500Da, an HBD < 5, and an HBA < 10. The
MW, logP, HBD, and HBA of the selected compounds met
the Lipinski’s rule. Additionally, PSA, P, and VWSA results
displayed drug-like behaviour. (Table 2).

MD simulation analysis
The structure of Nsp4 and top five screened compound-
complex with Nsp4 was employed for 100 ns MD simu-
lation study for predicting the dynamic changes during
protein-ligand interaction and their nature of stability.
The present study included various parameters i.e.
RMSD, RMSF, Rg, SASA, H-bond, PCA, Gibbs free en-
ergy landscape, and binding free energy calculation.

Structural deviation analysis through RMSD
The RMSD value describes the dynamic behaviour
among native structures to a new pose. After a 70 ns of
simulation to obtain a stable trajectory, the RMSD values
were 0.35, 0.25, 0.29, 0.23, 0.38, and 0.39 nm for Nsp4,
Nsp4-ZINC38167083, Nsp4-ZINC16919178, Nsp4-
ZINC08792350, Nsp4-ZINC01510656, and Nsp4-
ZINC08877407, respectively. These data suggest that
Nsp4-ZINC08792350 and Nsp4-ZINC38167083 are
highly stable complexes relative to the others. Because
each Nsp4–compound complex demonstrated stability
after the 70 ns simulation, we performed further evalua-
tions on each for last 30 ns trajectory (Fig. 2A).

Flexibility analysis through RMSF
Evaluation of the RMSF values used to assess structural
rigidity revealed values of 0.08, 0.11, 0.12, 0.10, 0.11, and
0.11 nm for Nsp4, Nsp4-ZINC38167083, Nsp4-
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Table 1 Binding free energies of the top 10 screened compounds along with the amino acid residues involved in interactions. The
amino acid residues shown in bold are involved in hydrogen-bonding interactions

S.No. Compound
(ZINC ID)

Binding free energy
(Kcal/ mol)

Amino acid residues involved in interactions via different types of bonding

1. ZINC38167083 −10.0 Ser18, Ala38, His39, Leu41, Thr42, Gly43, Asn44, Val61, Gly63, Asp64, Thr134, Ile143, Thr145,
Phe151

2. ZINC16919178 −9.9 Phe3, Thr5, Ser9, Leu10, Asn11, Phe26, Pro78, Tyr92, Leu94, Val99, Pro101, Ile123, Gly127

3. ZINC08792350 −9.5 Phe3, Thr5, Ser9, Leu10, Asn11, Val76, Pro78, Arg90, Val99, Tyr92, Pro101, Phe166, Asp192, Ile123,
Leu196

4. ZINC01510656 −9.4 Thr5, Ser9, Leu10, Asn11, Phe26, Val76, Pro78, Tyr92, Leu94, Val99, IIe123, Gly127

5. ZINC08877407 −9.3 His39, Gly63, Asp64, Ala114, Cys115, Gly116, ASP117, Ser118, His133, Thr134, Gly135, Ser136,
Lys138, Ile143, Thr145, Phe151

6. ZINC32124273 −9.3 Phe3, Thr5, Ser9, Asn11, Phe26, Pro78, Lys79, Ala80, Tyr92, Leu94, Arg90, Val99, Pro101, Ile123,
Thr124, Glu125, Ala126, Gly127

7. ZINC00852708 −9.2 Thr5, Ser9, Leu10, Asn11, Phe26, Val76, Pro78, Tyr92, Leu94, Val99, IIe123, Gly127

8. ZINC01225926 −9.2 Thr5, Ser9, Leu10, Asn11, Phe26, Val76, Pro78, Leu94,Tyr92,Val99, Ile123, Gly127

9. ZINC02116980 −9.2 Gly63, Asp64, Ala114, Cys115, Gly116, Asp117,Ser118, His133, Gly135, Thr134, Ser136,
Lys138, ILE143, Thr145, Phe151

10. ZINC08790125 −9.2 Ser18, Ala38, Leu41, Gly43, Asn44, His39, Val61, Gly63, Asp64, Thr134, IIe143, Thr145, Phe151

Fig. 1 2D representation of the binding interactions of top five screened natural compounds with Nsp4 depicted key amino acid residues
contributed in protein-ligand interactions. A ZINC38167083, (B) ZINC16919178, (C) ZINC08792350, (D) ZINC01510656, and (E) ZINC08877407

Pathak et al. Journal of Biological Engineering            (2022) 16:4 Page 4 of 11



ZINC16919178, Nsp4-ZINC08792350, Nsp4-
ZINC01510656, and Nsp4-ZINC08877407, respectively
(Fig. 2B). Higher RMSF values were due to ligand bind-
ing, causing alterations in protein geometry. Minimal
fluctuations were observed in Nsp4-ZINC08792350 and
Nsp4-ZINC38167083 complex compared with that in
other complexes.

Radius of gyration (Rg) analysis
Assessment of complex compactness according to Rg
calculation revealed values of 1.50, 1.27, 1.43, 1.46, 1.39,
and 1.44 nm for Nsp4, Nsp4-ZINC38167083, Nsp4-
ZINC16919178, Nsp4-ZINC08792350, Nsp4-
ZINC01510656, and Nsp4-ZINC08877407, respectively
(Fig. 2C). The results indicate that the Nsp4-

Table 2 Physicochemical properties of the top 10 screened compounds

S.No. Compound MW (g/mol) LogP HBD HBA PSA (2D) (Å) P VWSA (3D) (Å)

1. ZINC38167083 446.422 3.317 4 4 116.40 45.91 494.66

2. ZINC16919178 448.518 5.584 0 4 68.28 49.15 579.49

3. ZINC08792350 488.547 4.32 0 6 67.67 57.27 660.92

4. ZINC01510656 379.459 4.7 0 2 37.38 43.18 524.87

5. ZINC08877407 453.535 3.995 0 6 93.14 47.17 667.66

6. ZINC32124273 464.525 4.578 0 7 82.60 50.46 614.48

7. ZINC00852708 365.432 4.392 0 2 37.38 41.41 492.81

8. ZINC01225926 379.459 4.566 0 2 37.38 43.26 527.17

9. ZINC02116980 477.488 4.828 0 6 97.05 50.01 641.83

10. ZINC08790125 460.537 4.478 3 2 80.99 53.60 620.08

Fig. 2 Stability analysis (A) RMSD values for the Nsp4–compound complexes. Flexibility analysis (B) RMSF values for the Nsp4–compound
complexes over the final 30 ns of the simulations. Compactness (C) Rg, and Solvent accessible surface area analysis (D) SASA values for the final
30 ns of the simulations. Black, red, green, blue, orange, and violet colours represent Nsp4, Nsp4-ZINC38167083, Nsp4-ZINC16919178, Nsp4-
ZINC08792350, Nsp4-ZINC01510656, and Nsp4-ZINC08877407, respectively. E Changes in the number of hydrogen bonds in each respective
complex according to data from the final 30 ns of the simulations. Red, green, blue, orange, and violet colour represent Nsp4-ZINC38167083,
Nsp4-ZINC16919178, Nsp4-ZINC08792350, Nsp4-ZINC01510656, and Nsp4-ZINC08877407 respectively
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ZINC38167083 complex showed a more compact struc-
ture than the other complexes.

Solvent accessible surface area (SASA) analysis
To identify changes in the solvent-accessible regions of the
complexes, we determined SASA values over the course of
the final 30 ns of the simulation. Our study revealed values
of 95.88, 98.33, 98.98, 97.13, 96.97, and 100.92 nm2 for Nsp4,
Nsp4-ZINC38167083, Nsp4-ZINC16919178, Nsp4-
ZINC08792350, Nsp4-ZINC01510656, and Nsp4-
ZINC08877407 (Fig. 2D), revealing relatively minimal
changes after binding by each of the compounds.

Interaction analysis through hydrogen bonding
Hydrogen bonding is the most important bond for stabil-
izing protein–ligand interactions. The average number of
hydrogen bonds for the complexes Nsp4-ZINC38167083,
Nsp4-ZINC16919178, Nsp4-ZINC08792350, Nsp4-
ZINC01510656, and Nsp4-ZINC08877407 over the final
30 ns of the simulations was 0–1 and that for Nsp4-
ZINC38167083 and Nsp4-ZINC16919178 was 0–2 and
0–3, respectively (Fig. 2E). Hence, these compounds inter-
acted with Nsp4 and provided a stable complex during
protein–ligand interactions.

Principal component analysis (PCA)
In PCA, the sum of the eigenvalues suggests the overall
flexibility of a structure under different conditions.
Therefore, the first 5 of 50 eigenvectors used to calculate
eigenvalues from the final 30 ns of the simulation were
used to determine the percentage change in structural
movement. The results revealed that these five eigenvec-
tors accounted for 42.85, 63.97, 63.27, 59.14, 64.83, and

71.05% of the motions for Nsp4, Nsp4-ZINC38167083,
Nsp4-ZINC16919178, Nsp4-ZINC08792350, Nsp4-
ZINC01510656, and Nsp4-ZINC08877407 respectively
(Fig. 3A), suggesting increased movement after the bind-
ing of each ligand. Moreover, Nsp4-ZINC38167083,
Nsp4-ZINC16919178, Nsp4-ZINC08792350, and Nsp4-
ZINC01510656 showed less overall motion relative to
Nsp4-ZINC08877407. Additionally, generation of a 2D
plot for assessing protein dynamics after ligand binding
suggested the overall stability (lowcorrelated motions) of
Nsp4, Nsp4-ZINC38167083, and Nsp4-
ZINC08792350(Fig. 3B), indicating these compounds as
possible leads for further evaluation as inhibitors.

Gibbs free energy landscape
We then calculated the Gibbs free energy landscape
using the first two principal components (PC1 and PC2)
in order to visualize the results. Fig. 4 shows the colour-
coded plots generated for Nsp4 along with each com-
plex. The lowest free energy values (≤9.08 kJ/mol) were
observed for Nsp4-ZINC38167083, suggesting that this
complex demonstrated overall thermodynamic stability.
The other complexes (Nsp4-ZINC16919178, Nsp4-
ZINC08792350, Nsp4-ZINC01510656, and Nsp4-
ZINC08877407) had values of to 11.4 kJ/mol, implying
that these complexes have numerous high-energy
minima.

Binding free energy
We then evaluate the binding free energy associated with
each ligand through MM-PBSA using the final 10 ns of
the simulation, for calculation of van der Waals and
electrostatic interactions, Polar solvation, and SASA.

Fig. 3 Principal component analysis (A) Eigenvalues derived from the final 30 ns of each simulation and used for PCA depicted Eigenvalues vs.
first fifty eigenvector. B First two eigenvectors depicted Nsp4 motion in space for all the systems. Black, red, green, blue, orange, and violet
colours represent Nsp4, Nsp4-ZINC38167083, Nsp4-ZINC16919178, Nsp4-ZINC08792350, Nsp4-ZINC01510656, and Nsp4-ZINC08877407 respectively
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The calculated binding free energy for Nsp4-
ZINC38167083, Nsp4-ZINC16919178, Nsp4-
ZINC08792350, Nsp4-ZINC01510656, and Nsp4-
ZINC08877407 was − 124.54, − 128.44, − 159.33, −
122.50, and − 78.19 kJ mol− 1 respectively (Table 3).
The investigation of residual binding energy is a key

method for identifying residues important to ligand
binding. Fig. 5 shows that amino acid residues at posi-
tions 5 to 142 contributed significantly to binding of
ZINC38167083, ZINC16919178, ZINC08792350, and

ZINC01510656, which are the catalytic residues in the
active site. Fewer contacts were observed in relation to
ZINC08877407 binding, suggesting that ZINC38167083,
ZINC16919178, ZINC08792350, and ZINC01510656
represent potential Nsp4 inhibitors.

Discussion
PRRSV is a recalcitrant and intricate disease in a pig
when working as a cofactor in a porcine respiratory dis-
ease complex (PRDC) or primary infectious agent. It was

Fig. 4 The color-coded illustration of the Gibbs free energy landscape plotted using PC1 and PC2. The lower energy systems are represented by
the deeper blue color on the contour map. A Nsp4, (B) Nsp4-ZINC38167083, (C) Nsp4-ZINC16919178, (D) Nsp4-ZINC08792350, (E) Nsp4-
ZINC01510656, and (F) Nsp4-ZINC08877407

Table 3 Average binding free energies of Nsp4 complexes in kJ mol − 1

Compounds van der Waals interactions Electrostatic interactions Polar solvation SASA Binding energy

ZINC38167083 −161.742 ± 16.571 −36.716 ± 14.192 89.570 ± 30.038 −15.652 ± 1.890 −124.540 ± 17.142

ZINC16919178 −202.964 ± 19.700 −14.995 ± 12.321 107.288 ± 24.499 −17.775 ± 1.752 −128.446 ± 13.116

ZINC08792350 − 210.397 ± 12.126 −5.732 ± 4.973 76.102 ± 13.673 −19.303 ± 1.248 −159.330 ± 14.200

ZINC01510656 −145.554 ± 11.730 −3.108 ± 4.634 40.772 ± 10.125 −14.615 ± 1.279 −122.505 ± 12.199

ZINC08877407 −101.513 ± 9.428 −7.238 ± 5.481 40.488 ± 23.110 −9.935 ± 2.168 −78.199 ± 21.645
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identified as the most frequent virus linked to PRDC
[35–39]. Furthermore, PRRSV has been shown to impair
the host immune system, which can lead to more serious
secondary infections, and chronic disorders [35]. The in-
volvement of Nsp4 in PRRSV replication and pathogen-
esis is decoded and recommended as one of the key
molecular targets for drug development [14]. Therefore,
identification of Nsp4 inhibitors is needed to prevent
and manage the disease. Natural compounds have made
immense contributions in the identification of lead mol-
ecule(s) with antiviral potential. It is believed that the
disease can be controlled successfully by developing
small molecules that can inhibit Nsp4 activity linked
with pathogenesis [14]. In the present study, computa-
tional approaches are utilized for the identification of
possible lead compounds via molecular docking of nat-
ural compounds database through structure-based vir-
tual screening followed by downstream analysis.
Structure based-virtual screening is a powerful computa-
tional approach that is used to investigate important lead
molecule(s) from a big set of a compound database
based on the lowest binding energy required for stabiliz-
ing the protein-ligand complex [40].
From the structure-based virtual screening, we have

selected the top ten natural compounds that show inter-
action with key residues. Further, protein-ligand analysis
of the top 5 compounds demonstrated that the
ZINC38167083 interacted with Nsp4 and formed one
conventional hydrogen bond at position Gly63. Besides,
amino acid residues Ser18, His39, Leu41, Thr42, Gly43,
Asn44, Thr134, and Thr145 were involved in van der
Waals interactions, and Val61 and Ile143 formed alkyl

bonds. Ala38 and Phe151 participated in interaction
through amide-pi and pi-pi t-shaped bonding. Addition-
ally, Asp64 contributed to interaction through the pi-
anion bond. ZINC16919178 bonded with Nsp4 at pos-
ition Asn11 by one conventional hydrogen bond. In
addition, amino acid residues Phe3, Thr5, Ser9, Leu10,
Phe26, Ile123, and Gly127 formed van der Waals inter-
actions; Pro78, Tyr92, Leu94, Val99, and Pro101 formed
alkyl and pi-alkyl bonds. ZINC08792350 interacted with
Nsp4 Thr5, Ser9, Asn11, Val76, Pro78, Ile123, Phe166,
and Asp192 through van der Waals interactions; Phe3
and Tyr92 formed pi-pi t-shaped bonding. In addition,
the amino acid residues Leu10, Pro101, Leu196 contrib-
uted to interaction through pi-alkyl bonding; Arg90 and
Val99 formed pi-anion and pi-sigma bonds with
ZINC08792350, respectively. ZINC01510656 bonded
with Nsp4 at Thr5, Asn11, Val76, Phe26, Leu94, and
Gly127 through van der Waals interactions; amino acid
residues Leu10, Pro78, and IIe123 formed pi-alkyl bonds,
and Ser9, Tyr92, Val99 contributed in interaction by
carbon-hydrogen bonding, pi-pi t-shaped, and pi-sigma
interactions, respectively. ZINC08877407 formed con-
ventional hydrogen bonds with Nsp4 at position His39,
Ser118, ASP117, and Ser136; amino acid residues Gly63,
Asp64, Ala114, Cys115, Gly116, Thr134, Lys138, and
Thr145 contributed to protein-ligand interaction
through van der Waals. Additionally, Gly135 formed a
carbon-hydrogen bond, and His133, Ile143, and Phe151
interacted through pi-anion, pi-alkyl, and pi-sigma bond-
ing, respectively. Medicinal chemists have traditionally
been interested in noncovalent interactions that are indi-
cative of attraction, directed intermolecular forces in

Fig. 5 Plot depicting the amino acid residues of Nsp4 contributing to the binding with natural compounds. Red, green, blue, orange, and violet
colours represent ZINC38167083, ZINC16919178, ZINC08792350, ZINC01510656, and ZINC08877407, respectively
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their search for the “glue” that keeps ligand and their
molecular target together. In recent years, with the rapid
increase in the number of solved biomolecular structures
and the performance enhancement of computational
methods, it is now possible to provide a more thorough
understanding of protein-ligand interaction [41]. There-
fore, based on the results, it was concluded that the
screened compounds can inhibit the virulence activity of
Nsp4 [14]. Besides, the results of physicochemical prop-
erties prediction suggest that the screened compounds
demonstrated good drug-like behavior and could be con-
sidered for further analysis [42, 43]. Therefore, 100 ns
MD simulation analysis was conducted for Nsp4 and top
5 natural compounds i.e. ZINC38167083,
ZINC16919178, ZINC08792350, ZINC01510656, and
ZINC08877407, respectively with Nsp4 to evaluate the
dynamic behavior of protein and protein-ligand com-
plexes. It is recognized as a powerful approach for pre-
dicting the conformational stability of macromolecules
before and after ligand binding, besides the simulated
data can be utilized for calculation of real binding energy
of small molecules concerning time along with a contri-
bution of binding amino acid residues present in the
macromolecular target [44]. Several structural parame-
ters were calculated, including RMSD, RMSF, Rg, SASA,
H-bonding, PCA, and gibbs free energy [45–48]. The
RMSD value indicated that all of the complexes were
stable and creating an equilibrated trajectory for further
investigation. As a result, we determined RMSF, Rg,
SASA, PCA, and Gibbs free energy to determine the na-
ture of each system subjected for MD simulation. Drug
selectivity, metabolization, and stability all require H-
bonds. To better understand the H-bond and its contri-
butions to the overall stability of each system, an H-
bond analysis of natural compounds-Nsp4 complexes
were calculated. The hydrogen bonding study indicates
that all of the Nsp4-complexes are stable and made
bonding with essential catalytic residues [49]. The over-
all analysis revealed that each complex was stabilizing
after 70 ns indicating better interaction with Nsp4 in
terms of stability that is required for its inhibition. Fur-
ther, MM-PBSA binding free energy and residual bind-
ing energy were calculated to assess the binding
affinities of natural compounds with Nsp4. For deter-
mining the binding free energy of protein–ligand com-
plexes by using MD simulation trajectory, it is a
frequently used and well-accepted method [33, 50]. The
strength of the binding contacts between the ligand and
the target protein is measured by ligand binding affinity,
which is directly linked to ligand potency. In the field of
drug discovery, its evaluation is crucial. Furthermore, in
favorable reactions, the free energy is negative. So, low-
ering the binding energy improves interactions, and low
binding energy corresponds to the high binding affinity

of protein-ligand complexes [51]. MM-PBSA analysis
demonstrated that the compounds ZINC38167083,
ZINC16919178, ZINC08792350, and ZINC01510656 can
act as a potential lead for inhibition of Nsp4 [52, 53].
Whereas, ZINC08877407 was not recommended as a
lead because their binding energy was found to be higher
as compared to other compounds.
In past years, the identification of lead compounds for

drug development take much time and cost as well as
required good infrastructure experimental facilities [11,
54]. Due to advances in structural biology, computer sci-
ence, and bioinformatics, it becomes easy to find out pu-
tative molecule(s) by a screening of a big database that
has a strong affinity with the target for experimental
evaluation [24, 55]. It saves the cost and time of the sci-
entific community. Most of the medicines available in
the market are from a natural source or it is a derivative
of naturally occurring molecules [11, 24]. Natural com-
pounds have immense potential to inhibit virus and
pathogenic proteins and act as antiviral drugs [56–58].
The results presented in this work are, therefore, in-
formative for understanding the antiviral potential of
suggested compounds as therapeutics for PRRSV. It
might be also useful for the prevention of pigs and other
animals from different viral diseases [59, 60].

Conclusions
PRRSV infection is a main concern for the global swine
industry, and there is a need to identify novel and effect-
ive therapeutic agents. Given the importance of Nsp4 in
PRRSV replication and pathogenesis, we employed com-
putational and MD approaches to screen and identify
natural compounds as novel inhibitors of Nsp4 activity.
The results identified four possible lead compounds that
represent potentially effective drug-like inhibitors for ap-
plication as antiviral therapeutics. Further studies are
warranted to confirm these findings through experimen-
tal and clinical evaluations in order to promote future
management of PRRSV infection.
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