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Abstract 

The production of value‑added bio‑compounds from rejuvenated sources and their recruitment for healthcare 
services are paramount objectives in the agenda of white biotechnology. Hereupon, the current study focused 
on economic production of single cell oils (SCOs) from oleaginous fungi Alternaria sp. (A‑OS) and Drechslera sp. (D‑OS) 
using cheese whey waste stream, followed by their evaluation as antibiofilm and anticancer agents, for the first 
time. As a sole substrate for growth, the whey aided in lipid accumulation by 3.22 and 4.33 g/L, which represent‑
ing 45.3 and 48.2% lipid content in Drechslera sp. (D‑OS) and Alternaria sp. (A‑OS), respectively. Meanwhile, a higher 
unsaturation degree was detected in A‑OS by 62.18% comparing to 53.15% of D‑OS, with advantageous pres‑
ence of omega‑6 poly unsaturated fatty acid by 22.67% and 15.04% for A‑OS and D‑OD, respectively, as revealed 
by GC‑MS and FTIR characterization analysis. Interestingly, an eminent and significant (P ≤ 0.05) antibiofilm potency 
was observed in a dose‑dependent modality upon employing both SCOs as antibiofilm agents. Whereas, 100 µg/mL 
of A‑OS recorded superior inhibition of P. aeruginosa, S. aureus and C. albicans biofilms development by 84.10 ± 0.445, 
90.37 ± 0.065 and 94.96 ± 0.21%, respectively. Whereas, D‑OS (100 µg/mL) thwarted the biofilms of P. aeruginosa, S. 
aureus and C. albicans by 47.41 ± 2.83, 62.63 ± 5.82 and 78.67 ± 0.23%, correspondingly. Besides, the metabolic perfor‑
mance of cells within biofilm matrix, protein, carbohydrate contents and hydrophobicity of examined biofilms were 
also curtailed in a significant correlation with biofilm biomass (r ≥ 0.9). Further, as anticancer agents, D‑OS recorded 
higher potency against A549 and CaCo‑2 cell lines with IC50 values of 2.55 and 3.425% and SI values of 10.1 and 7.5, 
respectively. However, A‑OS recorded 8.275% and 2.88 for IC50 and SI of Caco‑2 cells, respectively. Additionally, A‑OS 
activated caspase 3 by 64.23 ± 1.18% and 53.77 ± 0.995% more than D‑OS (52.09 ± 0.222% and 49.72 ± 0.952%) in A549 
and Caco‑2 cells, respectively. Furthermore, the enzymes, which associated with cancer invasion, metastasis, and angi‑
ogenesis (i.e., MMP2 and MMP9) were strongly inhibited by A‑OS with 18.58% and 8.295%, respectively as IC50 
values; while D‑OS results recorded 23.61% and 13.16%, respectively, which could be ascribed to the higher ω‑6/ω‑3 
contents of A‑OS. The promising results of the current study opens up the vision to employ SCOs as anti‑infective 
nutraceuticals and in complementary/alternative therapy and prophylactic programs as well.

Keywords Oleaginous fungi, Secondary metabolites, Fatty acids, Antimicrobial, Biological activity, Industrial waste

*Correspondence:
Marwa Eltarahony
meltarahony@srtacity.sci.eg; m_eltarahony@yahoo.com
Hadeel El‑Shall
Helshall@srtacity.sci.eg; hadeel.elshall28@gmail.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13036-024-00455-y&domain=pdf


Page 2 of 22Eltarahony et al. Journal of Biological Engineering           (2024) 18:62 

Introduction
The industrial revolution is the fundamental engine 
behind numerous advanced technologies, which intro-
duces perceptible leaps in the provision of multiple 
services, society and economics. Nonetheless, the pro-
duction of huge amounts of contaminants that released 
continuously in our biosphere considers being the main 
obstacle of such technological progress. The pollution of 
natural resources (i.e., water, soil, air) with anthropogenic 
waste products undoubtedly harms human health and its 
surrounding environment, in particular with overpopula-
tion and uncontrolled urbanization. Notably, cancer and 
biofilm causing illness are the most common diseases 
caused by environmental pollution and one of the most 
representative etiological agents for morbidity and mor-
tality as revealed by world health organization (WHO) 
and National Institutes of Health (NIH) [1–3].

However, the remedy of biofilm infections and firm 
tumors confronts a similar complication. Wherein, the 
notable conventional medications face certain difficul-
ties in reaching and damaging the inner cells of cancer 
and biofilm-embedded bacteria owing to the heteroge-
neities of local micro-environment [4, 5]. Additionally, 
the alteration in immune reactions and cytotoxicity of 
applied chemotherapy against healthy cells were also 
documented in both diseases. The microbiota dysbiosis, 
neuromuscular blockade, nephrotoxicity and ototoxic-
ity are the frequent side effects of antimicrobial agents. 
However, the lower counts of neutrophil, platelet and 
erythrocyte are the common complications of cancer 
therapeutic [4–6].

Accordingly, the necessity for design new, biosafe 
and effective antibiofilm/ anticancer drugs, for coping 
with such upsetting difficulties, is urgent. In the recent 
era, the biologically-based technology (i.e., metabo-
lomics and biotechnology) gained colossal attention 
from scientists and technologists by the dint of its 
safety, biocompatibility, eco-friendliness and sustain-
ability. Intriguingly, such biologically-based products 
are derived from plants, animals and microorganisms, 
which provide prototypes for several pharmacologically 
active compounds in treating cancer and biofilm-based 
infections [7]. Single cell oils (SCOs) or Fatty acids (FAs) 
are categorized among distinct and potential bioactive 
compounds, which pervasive in nature and have an 
indispensable role in biological, nutritional and clinical 
viewpoints [8]. It is worth recalling that consumption 
of certain FAs has been powerfully associated with sev-
eral health profits, especially when interchanging satu-
rated fatty acids (SFAs) with mono-un saturated fatty 
acids (MUFAs) or poly unsaturated fatty acids (PUFAs). 
They play a crucial role in reducing cholesterol, which 

in turn reduce the danger of cardiovascular disease 
and have been reported to reduce the risk of inflamma-
tory conditions such as arthritis, Crohn’s disease and 
asthma. Besides, MUFAs and PUFAs are recognized as 
apoptosis-dependent anticancer dietary components, 
which causing selective cytotoxicity towards cancer 
cells with little or no toxicity on normal cells [9, 10]. 
The carcinogenic process is believed to involve MMP-2 
and MMP-9 in order to angiogenesis and metastasis 
occurring in various cancer cell lines. Previous studies 
demonstrated that matrix metalloproteinase (MMP) 
activities can be inhibited by PUFAs [11–13]. Unfor-
tunately, human bodies cannot synthesis PUFAs and 
therefore, it is essential to be obtained them from only 
dietary sources in our life style and this essentiality is 
also spirited for cancer cells [14].

Collectively, these overall features seem being advan-
tageous upon employing industrial waste products as 
raw materials for the manufacturing process; taking 
into account the green production in an economic way. 
Food industries, in particular dairy industry, are con-
tinuously developed in an incredible dynamic process 
of transformation to meet market requirements. Due 
to the economic and nutritional significance of dairy 
products, their industry deemed a substantial soci-
etal asset globally, generating hereby large quantities 
of whey as co-product or feedstock [15]. Noteworthy 
mentioning that whey is organic effluent rich in easy 
fermentable sugar (i.e., lactose), fats, proteins, non-
protein nitrogenous compounds, lactic acid, vitamins 
and minerals with biochemical oxygen demand (BOD) 
and chemical oxygen demand (COD) oscillated from 40 
to 60 and 50 to 80 g/L, respectively. Thus, its arbitrary 
discharge in water bodies, without proper manage-
ment and sustainable practices, represents a real envi-
ronmental risk [16, 17]. Let alone the economic losses 
due to squander of nutrients and energy. Therefore, for 
maintaining the nutritional value of whey and simulta-
neously alleviating its detrimental environmental peril, 
various studies utilized it as cost-effective and sustain-
able substrate for resource recovery, microbial growth 
and yielding advanced valuable biotechnological prod-
ucts [18, 19].

Based on the previous background, our study focused 
on the economic production of mycogenic SCOs, under 
the umbrella of reduced operational costs, using cheese 
whey as sole and chief nutritional media. The extracted 
SCOs were characterized and subsequently evaluated 
as antibiofilm and anticancer agent. Hitherto, no study 
till our knowledge, scrutinized the antibiofilm and anti-
cancer potentiality of SCOs generated by both fungal 
strains under study.
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Materials and methods
Fungal stains, growth conditions, extraction, 
transesterification and characterization of lipids samples
The two fugal strains of this study Alternaria sp. and 
Drechslera sp. were isolated, examined as oleaginous fila-
mentous fungi and identified molecularly with accession 
numbers of MH348917.1 and MG582185.1, respectively 
[20, 21]. Strains were maintained on potato dextrose agar 
slants (PDA) at 4  °C and refreshed every 3–4 months. 
Cheese whey, as waste stream, was procured from dairy 
processing factories in New Borg El-Arab city and uti-
lized as main cultivation media; replacing entirely, by 
such way, the microbiological media for fungal propa-
gation and lipid accumulation. By using 1.0  M (HCl or 
NaOH), its pH was adjusted to 6 followed by steriliza-
tion. In 250 ml flasks contained about 70 ml of whey, the 
fungal lawns were inoculated and incubated at  28oC in an 
orbital shaking 150 rpm for 4 days, in triplicate. Thereaf-
ter, dry biomass, lipid yield and content were determined 
as described in details by El-shall et  al. [9]. Extraction 
and transesterification of lipids were performed as briefly 
described in [22]. The transesterified lipids from both 
fungal strains were characterized by gas chromatogra-
phy–mass spectrometry (GC-MS) and Fourier Trans-
form Infrared Spectroscopy (FTIR). Initially, the samples 
were analyzed by Agilent 6890 Gas Chromatograph 
equipped with a straight deactivated 2 mm direct injec-
tor liner and a 15 m Alltech EC-5 column (250 µ I.D., 0.25 
µ film thickness), to detect and quantify saturated and 
unsaturated contents of fatty acid. The operating condi-
tions were held at 250  °C for inlet temperature, 280  °C 
for detector temperature and 35  °C initial oven temper-
ature, which was held for 2 min then elevated to 300 °C 
for 23 min. The injection volume was 2 mL, with a split 
ratio of 10:1. Helium served as a carrier gas at a constant 
flow rate of 1 ml/min. The FAs profile was identified via 
comparison of its chromatographic peaks and retention 
times with those of WILEY 09 and NIST 11 mass spectral 
database. Notably, each individual peak was quantified by 
means of standards and their corresponding calibration 
curves. Regarding FTIR, KBr was used as a matrix in a 
disc method through a scanning spectrum ranged from 
3500 to 500  cm−1 by Shimadzu FTIR-8400 S, Japan spec-
trophotometer at a resolution of 4  cm−1 [23].

Antibiofilm activity of lipid samples
The microtiter plate assay was applied to determine 
the antibiofilm activity of the SCOs qualitatively. 
Herein, Candida albicans (ATCC 10231), Staphylo-
coccus aureus (ATCC 25923) and Pseudomonas aer-
uginosa (ATCC 27853) were used as representative 
strains for yeast forming biofilm, Gram-positive and 

Gram-negative bacteria, respectively. In brief, about 
10 µL (1 ×  105 CFU/mL) of overnight microbial culture 
was dispensed in U-bottom microtiter plate contained 
sterile Trypticase Soy Broth (TSB) supplemented with 
1% w/v glucose (TSBG). Meanwhile, different concen-
trations of both SCOs (1–100  µg/mL) were pipetted 
in each inoculated well. Remarkably, wells contained 
TSBG without microbial inoculum containing 0.1% 
DMSO and inoculated wells lacking SCOs -treatments 
were run simultaneously as negative controls and posi-
tive controls, respectively. The plates were statically 
incubated for 24  h at 37  °C to empower the microbial 
propagation and biofilm maturation. Following incuba-
tion, the spent medium containing free-floating cells 
were decanted gently from each well. Then, 200  µl of 
sterile saline (0.9% NaCl) was used thrice to wash each 
well. Subsequently, the adherent cells were stained 
using Hucker’s crystal violet (0.1%, w/v) for 20  min at 
37  °C. The excess dye was removed after incubation 
and the stained biofilms were washed off gently with 
deionized distilled water. To elute the attached cells, 
200 µL of 95% ethanol was pipetted in each well and 
the absorbance was measured at 595 nm spectrophoto-
metrically by microtiter ELISA reader (Tecan Infinite 
M200, Switzerland) to quantify biofilms [24]. The per-
cent of biofilm suppression was calculated as described 
in the following formula:

Where A and  A0 pointed out to the absorbance of the 
positive control and the treated wells, respectively.

The effect of SCOs samples on biofilm metabolic activity
The viability of biofilm cells and their respiratory 
activity was quantified using (MTT) assay. The assay 
based on the capability of surviving and metaboli-
cally active cells to reduce the yellow tetrazolium salt 
a (3-[4,5-dimethyl-2-thiazolyl]-2, 5-diphenyl-2 H-tetra-
zolium-bromide) to a purple formazan. The setting 
up of the experiment was previously described. Once 
the biofilm formed after 24  h incubation and washed, 
about 200 µL of 0.25 mg/mL MTT solution was added 
and gently pipetted with the content of each well. The 
96-well tissue culture plate was incubated under dark 
and static condition for 2–3 h at 37 °C. The solution was 
withdrawn and replaced with 2% of dimethyl sulph-
oxide (DMSO) for solubilizing the insoluble formazan 
crystals. The absorbance was recorded at 570 nm using 
microtiter ELISA reader [23]. The higher absorbance 
reading reveals higher number of surviving cells in the 
biofilm. The effect of both oils on biofilm cells was cal-
culated as the previous equation (Eq. 1).

(1)Biofilm inhibition% = (A− Ao)/A ∗ 100
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The effect of SCOs samples on carbohydrate and protein 
contents of the biofilms
The biochemical components of the isolated biofilm in 
terms of total carbohydrate/ePS and total protein were 
detected before and after SCOs treatment. The phe-
nol–sulfuric acid protocol was employed to quantify the 
carbohydrate content using glucose as a standard; while 
Bradford assay was utilized for determination protein 
concentration and BSA used as a standard [25].

The effect of SCOs samples on biofilm hydrophobicity
The hydrophobicity of untreated or control and SCOs-
treated biofilm cells were measured through microbial 
adhesion to hydrocarbon (MATH) assay as described by 
[26]. Via such biphasic hydrocarbon/aqueous assay, the 
cell surface hydrophobicity (CSH) was expressed based 
on the change in optical density of the aqueous phase rel-
ative to the control. Initially, the biofilms were allowed to 
grow followed by decanting the planktonic cells, washing 
and suspension in phosphate buffer saline (PBS) (200 µL). 
Through scraping by a pipette tip, the biofilms became 
detached and resuspended in 3 mL of PBS buffer, then 
homogenously disruption by vortexing for 3  min; 0.4 
mL of xylene (hydrocarbon) was added to 2 mL of bio-
film suspensions and vortexed vigorously for 3 min. The 
overall suspensions were allowed to stand at room tem-
perature for 15  min till the separation of hydrocarbon/ 
aqueous phase. Ultimately, the absorbance of biofilm 
cells that remained in aqueous phase (i.e., hydrophobicity 
%) was determined spectrophotometrically at 600 nm by 
the following equation (Eq. 2).

The cells described as strongly hydrophobic, moder-
ately hydrophobic and hydrophilic when the obtained 
values recorded > 50%, 20–50% and < 20%, respectively 
[23, 27].

Anticancer activity of lipid samples
Cell lines
Wi-38 cell line (Human normal fibroblast lung cells), 
CaCo-2 cell line (Human Colorectal adenocarcinoma, 
epithelial cells) and A549 cell line (Human Lung adeno-
carcinoma, epithelial cells) cell lines were purchased 
from ATCC.

Safety assay and anticancer activity
An In-vitro viability test was used to determine the 
safety patterns and the anticancer effects of the tested 

(2)

Hydrophobicity inhibition%

= 1− (OD600 nm positive control)

− (OD600 nm treated)]/

(OD600 nm positive control)× 100

SCOs samples on non-cancerous (Wi-38) and cancerous 
cell lines (A549 and Caco-2) using 3-(4,5-dimethylthi-
azol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophe-
nyl)-2  H-tetrazolium (MTS) (Promega) assay according 
to the manual instructions. Briefly, 100 µL of (6 ×  104 
cells/mL) of the each overnight cell line culture were 
inoculated into 96 well plates. The inoculated plates were 
incubated overnight till semiconfluency. After incuba-
tion, 100 µL of oil samples at different concentrations 
(prepared in DMEM media) were added to the plates and 
the plates were incubated for further 2 days. The cellular 
viability was determined by quantifying the solubilized 
formazan in DMSO at 570 nm. The inhibition concentra-
tion at 50% (IC50) was quantified from the cytotoxicity % 
curve using GraphPad prism 9.

Selectivity index of oil samples
Cancer cell selectivity index of the examined SCOs-
treated samples was calculated according to the method 
explained by [28] with a minor modification; SI = IC50nc/
IC50cc, where IC50nc refers to the value of IC50 of the 
oil samples effects on normal cells, while IC50cc refers to 
the IC50 of the oil samples effects on cancer cell line.

Determination of caspase 3 activation
In brief, the untreated and treated cell lines were lysed 
in the supplemented lysis buffer and centrifuged. Super-
natants were incubated with the kit reaction buffer and 
substrate at 37 °C, as illustrated in caspase-3 assay colori-
metric kit (Abcam, US). After 2 h, the absorbance of all 
samples were assessed at 405 nm using microplate reader.

Determination of MMP2 and MMP9 inhibition
Following kit instructions (Abcam, US), serial concen-
trations of both SCOs were incubated with assay buffer 
and enzyme (MMP2 or MMP9) for 45 min at 37 °C. After 
adding substrate, absorbances were measured at 412 nm.

Statistical analysis
In the present study, all experiments were performed 
trice and the results were averaged and represented 
as means ± SEM (Standard Error of Mean). All results 
were analyzed by one way ANOVA followed by Tukeys 
test. The statistical significance of collected data was 
accounted when P- value was ≤ 0.05, as per Graphpad 
Prism 5.03 software (Graph Pad Software Inc., La Jolla, 
CA, USA) [23].

Results and discussion
Economic production and characterization of fungal SCOs 
The microbial lipids or SCOs, are categorized among 
the most promising natural feedstock for biofuel and 
nutraceuticals production. Remarkably, the proximity 
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of their structure with fish oil or even vegetable oils 
had gained a momentum, especially those derived from 
fungi. That could be attributed to their large quantity of 
biomass with high lipids yield in a short growth cycle 
and facile biomass collection. Remarkably, the versatil-
ity in fungal growth conditions facilitated their culti-
vation on low-cost culture medium based on different 
wastes, which were continuously accumulated in the 
environment causing severe pollution. Such dual tasks, 
of investing the environmental contaminants in biotech-
nological products, consider being the fundamental pil-
lar of sustainable green techno-economic productivity 
[9]. Several species of filamentous fungi were recorded 
in bioconversion of food processing wastes into value-
added by-products such as Aspergillus, Rhizopus and 
Trichosporon  [17]. Interestingly, Drechslera sp. and 
Alternaria sp. demonstrated significant potential for 
lipid production, especially under using of agro-indus-
trial wastes as substrates [20, 21]. Hereupon, the cur-
rent study focused on mycological production of SCOs 
from both fungal strains in an economic process via 
utilizing by-product of the cheese manufacturing indus-
tries (i.e., whey), as a sole nutrition source. Generally, 
it was recorded as highly nutritive waste stream full of 
proteins, vitamins, sugars, minerals, and other growth 
factors [29] and also reported previously as supporting 
material in fungal lipid production [30, 31]. Herein, the 
whey was utilized as a cultivation media without any 
addition of other nutrient sources. It facilitated the lipid 
accumulation yield in both filamentous fungi by 3.22 and 
4.33  g/L, which representing 45.3 and 48.2% lipid con-
tent in Drechslera sp. and Alternaria sp., respectively. 
In comparison, the lipid content of Drechslera sp. and 
Alternaria sp. reached to 33.18 and 29%, with lipid yield 
evaluated by 3.65 and 5.6 g/L, respectively, upon replac-
ing carbon source in their optimized media with agricul-
tural wastes (i.e., orange peel and molasses). However, 
on optimized microbiological media (i.e., Czapek-Dox’s 
medium), their lipid contents were assessed by 40.75 and 
50.3% for Drechslera sp. and Alternaria sp., respectively, 
reflecting the higher potentiality of whey stream as the 
main cultivation and production media in the lieu of car-
bon or nitrogen source [20, 21].

The characterstic features of SCOs from both oleagi-
nous fungi were determined initially by identifying their 
components through investigating the fatty acid methyl 
esters profiles after acidic transesterification as shown 
in (Fig.  1) and (Table  1), which manifested the qualita-
tive and quantitative differences in both examined pro-
files. Notably, the results of gas chromatography–mass 
spectrometry (GC-MS) showed common features among 
both profiles. Wherein, unsaturated fatty acids (USFAs) 
represented the dominate constituent in the profiles of 

both fungi by 62.18 and 53.15% for Alternaria sp. and 
Drechslera sp. respectively. Meanwhile, Palmitic acid-C16 
(SFAs) was the most prevalent FA by 29.0 and 28.9% for 
Alternaria sp. and Drechslera sp. respectively, followed 
by Oleic acid -C18 (MUSFAs), which was evaluated by 
24.7 and 28.8%, % for Alternaria sp. and Drechslera sp., 
correspondingly. On the other hand, the omega-6 (ɷ-6) 
poly unsaturated fatty acid (PUFAs) (i.e., Linolenic acid 
and γ-linolenic (C18) was the third major constituent in 
both profiles with the values of 26.89% and 15.72% for 
Alternaria sp. and Drechslera sp. respectively. Interest-
ingly, an obvious percent of PUFAs (30.02%) was detected 
for Alternaria sp. compared to 17.93% for Drechslera sp. 
In accordance with our result, Lauryn et  al. [32] dem-
onstrated that cheese whey was ideal choice for Mucor 
circinelloides in SCOs production with GC-MS-profile 
contained predominantly oleic acid (41%), palmitic acid 
(23%), linoleic acid (11%), and γ-linolenic acid (9%).

The acquisition of infrared spectra of lipids has been 
attained senior concern thank to providing opulent infor-
mation on their chemical components, besides it is a 
fast and economical technique [33]. Fig. 2 demonstrates 
the FTIR spectrum of both examined SCOs. Generally, 
the peaks at wavenumbers of 3742 and 3359   cm−1 of 
A-OS and 3200  cm−1 of D-OS indicated the existence of 
hydrate hydroxyl group (-OH). Similarly, as signposted 
by Nandiyanto et  al. [34], a broad absorption band in 
the range of 3650 and 3250  cm−1 represented the sign of 
hydrogen bond. Besides, the band at 3010   cm−1 in both 
SCOs samples pointed out to the C = CH- vibration origi-
nated from unsaturated fatty acids; interestingly, such 
band could be used for examining the degree of unsatura-
tion in oils as referred by Shapaval et al. [35]. In the same 
sense, Nandiyanto et al. [34] stated that the bands above 
3000  cm−1 are representative of unsaturated compounds. 
Accordingly, this could reflect the superior unsatura-
tion of fatty acids in Alternaria sp. than that observed 
in Drechslera sp., as more peaks were detected in the 
area above 3000  cm−1, which harmonized with results of 
GC-MS that confirmed the higher unsaturation degree in 
A-OS comparing to D-OS.

Notably, the spectral bands at 2889   cm−1 detected 
in D-OS characterizes the C-H stretching vibrations 
of lipids [36]. Meanwhile, Nandiyanto et  al. [34] men-
tioned that the double bond groups such as carbonyl 
(C = C) were present in the region of 1500–2000   cm−1. 
So, remarkably, both fungal patterns confirmed the pres-
ence of carbonyl (C = C) peaks as detected at 1994 and 
1648   cm−1 of A-OS and 1662   cm−1 of D-OS. While the 
presence of spectral band at that regions reflected the 
presence of crystallizable FAs [33]. However, the signa-
ture of  CH2 asymmetric bending and  CH2 vibration could 
be detected by the presence of peaks at wave numbers of 
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1403 and 1435   cm−1  [33, 37]. Whereas, typical bands at 
1252, 1114, 1050, 986 and 948   cm−1 of A-OS-FTIR pat-
tern and also 1273, 1096 and 993  cm−1 of D-OS FTIR pat-
tern referred to C-O stretching of phospholipids [38–40]. 
Regarding to the spectral bands at 718 and 611   cm−1 of 
D-OS and A-OS profiles, respectively, could be attribute 
to alkyne C-H bend and  CH2 rocking vibration, respec-
tively [34, 41]. Likewise, Forfang et  al. [42] elucidated 
that biological material (e.g., carbohydrates, proteins and 
lipids) exhibits CH stretching vibrations due to the pres-
ence of -CH3 and -CH2. Arguably, based on the above 
mentioned characterization techniques, the results of 
FTIR were deemed as strong evidence for the presence of 
functional groups that were related to intracellular lipids, 
which were detected and quantified by GC-MS analysis; 
emphasizing hereby the obvious discrepancies between 
SCOs of Alternaria sp. and Drechslera sp. in the content 
and structures.

Antibiofilm activity of SCOs
The presence of biofilm represents a serious threat to 
human health and surrounding ecosystem in various 
sectors. The biofilms injure medical equipment such 

as catheters, contact lenses, prosthetic devices, heart 
pacemakers, endoscopes, colonoscopes, dental plaques 
and dental irrigation units. Let alone their capability to 
invade human tissues causing severe infections [43]. 
However, the biofilms also adhere to food manufactur-
ing equipment, air-conditioning units, petroleum pipe-
lines and cooling towers, which symbolizes as evidences 
on industrial risk of biofilm. In the same sense, biofilms 
fixed themselves on external surfaces of marine vessels, 
water pipes, stones in a stream and sewage treatment 
plants, facilitating the accumulation of organic and inor-
ganic materials with other organism such as algae, plants 
and protozoa in a phenomenon called biofouling. The 
problem of biofouling lies behind deteriorating the aque-
ous flow system with its fauna; causing the prevalence of 
microbial contamination and accelerated corrosion.

Against this backdrop, various mechanical removal 
approaches and chemical biocides were utilized to elimi-
nate biofilms and prevent their hazard [44]. Nonetheless, 
the extensive use of antimicrobial agents generates multi-
drug resistance (MDR) phenomenon that led to ecologi-
cal balance disruption and epidemic diseases. Therefore, 
modern insights are directed toward employing natural 

Fig. 1 GC‑Ms analysis of fatty acid produced by (A) Alternaria sp. B Drechslera sp. cultivated on whey
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bioproducts as ecofriendly, biocompatible, safe and eco-
nomic agents in defeating water/foodborne pathogens, 
which harmonized with aims of recent international 
events like COP28. Hence, the current investigation is 
undertaken to determine the in vitro antibiofilm activity 
of SCOs extracted from Alternaria sp. and Drechslera sp. 
against some MDR microbes-forming biofilm. This target 
was implemented through detecting the effect of SCOs 
on biofilm formation, viability, biochemical composition 
and hydrophobicity.

In fact, S. aureus, P. aeruginosa and C. albicans 
were opted due to their ubiquitous occurrence and 

concomitance with nosocomial/community-acquired 
infections. Besides, they exhibit the capability to colo-
nize vast array of surfaces either abiotic or cellular 
interfaces, which lead to significant environmental and 
health threats. Therefore, crystal violet assay (CV) was 
employed to detect the antibiofilm influence of different 
doses of SCOs (1–100 µg/mL), which deemed as reliable 
and facile assay in staining the biofilm biomass entirely 
[45, 46]. As observed in Figs.  (3 and 4), the inhibitory 
patterns of both SCOs samples displayed significant dif-
ferences (P ≤ 0.05) in the biofilm development after treat-
ment, as unveiled by ANOVA. Besides, the inhibitory 

Table 1 Showing fatty acids (FAs) patterns of both SCOs extracted from Alternaria sp.and Drechslera sp.after their cultivation on whey 
media

Fatty acids Retention time SCOs of Alternaria sp.
A-OS

SCOs of 
Drechslera 
sp.
D-OS

Caprylic acid (C8) 7.007 0.88 0.23

Myristoleic acid (C14) 16.838 0.52 0.43

Myristic acid (C14) 17.453 0.38 0.55

Palmitoleic acid (C16) 21.233 4.49 4.36

Palmitic (C16) 22.009 29.01 28.89

Heptadecenoic 24.299 0.34 0.19

Gama‑linolenic (C18) 26.144 4.22 0.68

Linolenic (C18) 26.309 22.67 15.04

Oleic (C18) 26.144 24.78 28.86

Elaidic (C18) 26.350 1.71 0.21

Stearic (C18) 26.555 3.51 13.31

Cis‑5,8,11,14,17‑Eicosapentaenoic (C20) 31.315 0.63 0.40

Cis‑8,11,14‑Eicosatrienoic (C20) 31.798 0.65 0.15

Cis‑11,14‑Eicosadienoic (C20) 32.166 0.61 0.18

Cis‑11‑Eicosenoic (C20) 32.304 0 0.17

Cis‑11,14,17‑Eicosatrienoic (C20) 32.407 0.6 0.14

Arachidic (C20) 33.127 0.48 0.27

Heneicosanoic (C21) 36.513 0.43 0.11

Cis‑4,7,10,13,16,19‑Docosahexaenoic (C22) 37.778 0.64 1.21

Cis‑13,16‑Docosadienoic (C22) 38.745 0 0.14

Erucic (C22) 38.757 0 0.79

Behenoic (C22) 39.521 0.94 0.99

Tricosanoic (C23) 42.082 0.62 0.54

Nervonic (C24) 43.905 0.67 0.40

Lignoceric (C24) 44.429 1.23 1.77

Fatty acid type Total % of FAs
SFAs 37.82 46.85

USFAs 62.18 53.15

MUFAs 32.17 35.22

PUFAs 30.02 17.93

ɷ-3 1.87 1.75

ɷ-6 28.15 16.18
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power of both samples showed notoriously variation 
against examined pathogens. Namely, SCOs of Alter-
naria sp. (A-OS) suppressed the growth of P. aeruginosa 
biofilm at concentrations ranged from 1 µg /mL to 10 µg/
mL by 7.01 ± 0.3% to 50.85 ± 2.68%, respectively; while 
SCOs of Drechslera sp. (D-OS) enhanced the growth of 
P. aeruginosa biofilm by 33.41 ± 6.24% and 5.83 ± 2.83% 
at exact concentrations, respectively. Remarkably, the 
antibiofilm potency increased with elevation of applied 
doses of both examined oil samples. Wherein, the bio-
film of P. aeruginosa was inhibited significantly (P ≤ 0.05) 
at 100  µg/mL of A-OS and D-OS by 84.10 ± 0.445 and 
47.41 ± 2.83%, correspondingly. On the other hand, about 
90.37 ± 0.065% and 62.63 ± 5.82% inhibition was observed 
for S. aureus biofilm at 100 µg/mL of both SCOs in the 
same order. Furthermore, a pronounced and significant 
(P ≤ 0.05) fungicidal potency was noticed in blocking 

the biofilm formation of C. albicans that reached to 
94.96 ± 0.21% and 78.67 ± 0.23% upon treating with 
A-OS and D-OS (100  µg/mL), respectively. Generally, 
as inferred from these results, there is an inter-species 
variation phenomenon in a dose dependent performance 
exerted by the examined SCOs samples. In agreement 
with our results, Murugan et al. [47], found a variation in 
the biofilm growth of Proteus sp., E. coli, Bacillus sp. and 
S. aureus; assigning that to the differences in the physi-
ological behavior of different microbial species. Seem-
ingly, the cell wall architecture, microbial physiology with 
varied metabolic performance and uptake/regulation sys-
tems are considered being the fundamental parameters in 
managing the tolerance and susceptibility profiles among 
inter and intra-species of the microbes in their response 
to any antagonistic agent [48].

Fig. 2 FTIR spectrum of oil samples from (A) Alternaria sp. (B) Drechslera sp
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Effect of SCOs samples on biofilm metabolic activity
Actually, CV firmly stains the entire biofilm biomass, 
which includes polysaccharides in the mucilaginous 
mat conjugated with other biomolecules that are dis-
seminated in an even manner on the live as well as dead 
cells surface. Subsequently, the overall metabolic per-
formance of adhered microbial cells, which were treated 
with different concentrations of oil samples relative to 
untreated, was assessed calorimetrically using MTT 
assay. It is worth noting that tetrazolium salts (such as 

MTT (3-[4, 5- dimethylthiazol-2-yl]-2, 5-diphenyltetrazo-
lium bromide), XTT (2,3-bis(2-methoxy-4-nitro-5-sulfo-
phenyl)- 2  H-tetrazolium-5-carboxanilide) and TCC 
(2,3,5- triphenyl tetrazolium chloride) are frequently 
utilized in biological assays to investigate the viability 
of living cells. That occurs through enzymatic reduction 
of tetrazolium salt by the cellular NADH of metaboli-
cally active cells, which leads to the formation of colored 
formazan. Hence, different tetrazolium-based dyes were 
employed in various studies to determine biofilm viability 

Fig. 3 The Impact of A‑OS on biofilm development by P. aeruginosa, S. aureus and C. albicans. A‑Biofilm biomass suppression, B‑Metabolic 
performance, C‑ EPS inhibition, D‑Protein inhibition and E‑Hydrophobicity inhibition. All values were expressed as mean ± SEM. Treatments 
at various doses were comparing to untreated control with significance at *P ≤ 0.05
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in accompanying with other means like CV approach and 
microscale analysis [45, 46, 49].

Interestingly, both types of oil samples impacted on 
the viability of cells in the biofilm structure adversely, 
progressively and significantly (P ≤ 0.05) with increasing 
the doses of applied SCOs. Figs. (3 and 4) indicate that 
A-OS frustrated the propagation of active cell in P. aer-
uginosa biofilm matrix in all applied concentrations in 
the range of 2.35 ± 0.885% − 83.08 ± 0.235%. Conversely, 
D-OS flourished the growth of P. aeruginosa biofilm at 

low concentrations (1  µg/mL − 5  µg/mL) by the range 
of 16.72 ± 1.36% − 4.43 ± 1.36%; whereas, the viability of 
live cells curtailed to 48.12 ± 3.0% upon increasing the 
concentration to 100  µg/mL. Regarding to the biofilm 
of S. aureus, both oil samples inhibited the growth of 
active cells in linear concentration-dependent behavior; 
reaching to the maximum suppression by 85.9 ± 0.375 
and 62.48 ± 1.52% for A-OS and D-OS, respectively at 
100 µg/mL. In the same sense, the survival of C. albicans 
cells in biofilm network arrested by 86.54 ± 0.86% and 

Fig. 4 The Impact of D‑OS on biofilm development by P. aeruginosa, S. aureus and C. albicans.A‑Biofilm biomass suppression, B‑Metabolic 
performance, C‑ EPS inhibition, D‑Protein inhibition and E‑Hydrophobicity inhibition. All values were expressed as mean ± SEM. Treatments 
at various doses were comparing to untreated control with significance at *P ≤ 0.05
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64.94 ± 1.48% under the treatment of A-OS and D-OS 
(100 µg/mL), respectively. As noticed, the results of bio-
film inhibition were harmonized with that of metabolic 
activity. It is plausible to mention that viability and met-
abolic activity of all tested biofilm-forming pathogens 
correlated significantly with biofilm biomass (r ≥ 0.9, 
P = 0.00); reflecting hindrance impact of oil samples on 
active cells that are distributed within multilayer archi-
tecture of biofilm.

The effect of oil samples on biofilm’s carbohydrate 
and protein content
Carbohydrates or exopolysaccharides (ePs) and pro-
teins represent the intrinsic constituents of EPS scaf-
fold of the biofilm from both structure and function. As 
denoted by Gunn et al. [50] and Mosharaf et al. [51], the 
secreted proteins, adhesion proteins (e.g., lectins, Baplike 
proteins) and motility organelles configure the biofilm 
matrix proteins. However, galactose, mannose, glucose, 
arabinose, xylose, rhamnose, fucose, cellulose nanofib-
ers, galacturonic acid and N-acetyl-glucosamine are the 
most abundant carbohydrates detected in slimy matrix 
of S. aureus, Enterococcus faecalis, Klebsiella pneumo-
niae, and P. aeruginosa  [52]. As declared by Gunn et al. 
[50] the chemical constituents of the biofilm differ rely 
on the organism and was influenced by environmental 
parameters. Intriguingly, such specific components con-
trol biofilm integrity, maintain biofilm stability, configure 
its morphology, mediate cell-cell signaling, contribute in 
cell colonization/adherence and preserve its cells from 
adverse external stressors [23, 51].

Figure  (3) depicts the effect of A-OS on biofilm con-
tent of carbohydrates or ePS, which diminished from 
7.515 ± 0.13, 5.541 ± 0.147 and 6.59 ± 0.33  mg/mL in 
control untreated samples of S. aureus, P. aeruginosa, 
and C. albicans biofilms to 3.61 ± 0.34, 3.14 ± 0.335 and 
2.99 ± 0.19  mg/mL at 10 ug/mL of A-OS, respectively; 
representing by such way inhibition percentages of 
51.87 ± 4.55, 43.26 ± 5.9, and 54.5 ± 2.84%, respectively. 
However, the same concentration of D-OS reduced 
carbohydrate content of S. aureus, P. aeruginosa, and 
C. albicans biofilms to 5.100 ± 0.47, 4.98 ± 0.22, and 
4.20 ± 0.335  mg/mL by 32.09 ± 0.536, 9.94 ± 4.04, and 
36.23 ± 5.04% inhibition percentages, respectively (Fig. 4). 
In the same context, 10 ug/mL of A-OS reduced protein 
content of S. aureus, P. aeruginosa and C. albicans bio-
films from 9.64 ± 0.095, 9.75 ± 0.065 and 9.34 ± 0.1 mg/mL 
in the control untreated samples to 5.92 ± 0.11, 6.94 ± 0.17 
and 4.72 ± 0.16  mg/mL, which symbolize 38.54 ± 0.94, 
33.47 ± 1.74 and 49.43 ± 1.69% inhibition percent-
ages, respectively. Whereas, D-OS (10 ug/mL) dimin-
ished protein content to 7.44 ± 0.255, 8.40 ± 0.065 and 

5.61 ± 0.37  mg/mL causing 22.81 ± 2.63, 13.84 ± 0.59 and 
39.92 ± 3.89% inhibition.

Notably, significant and dramatic changes were 
observed in both contents upon elevating the concen-
trations till reached to the highest values at 100 ug/mL. 
Wherein, such concentration of A-OS caused in lowering 
the carbohydrate/ePS content of S. aureus, P. aeruginosa 
and C. albicans biofilms by 76.54 ± 7.04, 66.81 ± 2.51 and 
80.54 ± 1.77%, respectively. While the carbohydrate/ePS 
reduction percentage reached 60.22 ± 2.02, 50.03 ± 1.95 
and 64.26 ± 4.7% by D-OS for S. aureus, P. aeruginosa 
and C. albicans biofilms, respectively. Regarding the 
protein content, it lessened significantly to 63.94 ± 3.89, 
57.27 ± 5.43 and 74.87 ± 2.49% upon applying 100 ug/
mL of A-OS; however, D-OS (100 ug/mL) reduced it to 
49.39 ± 1.96, 47.61 ± 2.03 and 59.07 ± 1.78% for S. aureus, 
P. aeruginosa and C. albicans biofilms, respectively.

Effect of oil samples on biofilm hydrophobicity
The adhesion capability of microbial cell deemed as 
intrinsic property to colonize any substrate and boost 
biofilm lifestyle easily. Interestingly, cell surface traits 
in the formed of ePS and hydrophobicity are decisive 
parameters that manage the entire adhesion process. In 
addition, surface characteristics and ambient environ-
mental conditions rule the adhesion of the cells with the 
surface through number of interactions like hydropho-
bic, van der Waals and electrostatic. Remarkably, the 
cells with higher biofilm forming capacity possess higher 
hydrophobic nature that leads to potent adhesion and 
vice versa [53]. Given that the biofilm-forming cells with 
hydrophobic characteristics exhibit affinity to hydro-
carbons (e.g., hexadecane, octene, xylene, etc.), the cells 
retained in the organic phase; generating low turbidity 
of aqueous phase and by such method (i.e., MATH), the 
hydrophobicity nature of the biofilm is detected [54].

In the current study, the hydrophobicity index (HI) 
recorded 65.72 ± 2.3, 51.61 ± 1.12 and 59.12 ± 5.43% for 
P. aeruginosa, S. aureus and C. albicans respectively; 
denoting a higher hydrophobicity property of P. aerugi-
nosa than that exhibited by S. aureus and C. albicans. 
Upon applying different concentrations (10–100  µg/
mL) of both oil, a noticeable reduction in HI was shown 
(Figs.  3 and 4); implying progressively transition to 
hydrophilicity state, which reached to the maximum at 
the highest applied doses. Wherein, A-OS (10  µg/mL) 
lessened hydrophobicity to 64.18 ± 4.23, 49.18 ± 1.73 and 
58.62 ± 6.94% for P. aeruginosa, S. aureus and C. albi-
cans, by 1.54 ± 4.23, 2.43 ± 1.73 and 0.498 ± 6.91% inhibi-
tion percentage in the respective order. However, A-OS 
(100  µg/mL) switched S. aureus and C. albicans bio-
films to weak hydrophobicity state (i.e., became hydro-
philic) by recording 18.5 ± 1.22 and 22.18 ± 0.94% HI, 
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respectively; implementing 33.1 ± 1.22 and 36.94 ± 0.94% 
inhibition. While, the HI of P. aeruginosa biofilm altered 
to be moderate by recording 41.32 ± 1.65% and inhibition 
percentage recorded 24.04 ± 1.65%. On the other hand, 
D-OS (10 and 20  µg/mL) insignificantly enhanced the 
hydrophobicity of P. aeruginosa biofilm by 0.046 ± 2.55 
and 0.032 ± 2.364%, respectively. Whereas, at 100 µg/mL 
inhibited its hydrophobicity by 15.96 ± 0.74%; maintain-
ing HI in the potent region by recording 49.78 ± 0.74%. 
Regarding S. aureus and C. albicans biofilms, D-OS 
promoted their hydrophilic affinity in a dose-depend-
ent behavior, reaching to the maximum at 100  µg/mL 
by recording 25.34 ± 0.422 and 37.89 ± 0.826%, corre-
spondingly, which all remained in the moderate phase 
of hydrophobicity. Generally, albeit distinct structural 
variation in cells surface among the examined strains 
in our study, both oil samples substantiated their effi-
cacy in influencing on hydrophobicity adversely. It is 
important to highlight that hydrophobicity reflects the 
microbial attachment or adhesiveness ability, which var-
ies even from strain to strain and influenced by micro-
bial age, microbial surface charge and growth medium 
[55]. In study performed by Kim et  al. [56], 10  µg/ml 

of antibiofilm FAs (e.g., tricosanoic acids, palmitoleic, 
myristoleic acid, lauric acid, stearic, heptadecanoic and 
α-linolenic) reversed the biofilm of Cutibacterium acnes 
from hydrophobic region to hydrophilic region (hydro-
phobic index < 20%) simultaneously with biofilm inhibi-
tion, which agreed with our results.

Intriguingly, the results of the current investigation 
declared the existence of significant positive correla-
tion between all examined variables (i.e., inhibition of 
biofilm, protein, ePS, viability and hydrophobicity) with 
SCOs concentrations, as signified by Pearson’s correla-
tion coefficients (Table  2) (Figs.  5 and 6). Wherein, oil 
samples influenced negatively on the biofilm develop-
ment through modulating microbial-surface interactions, 
in particular hydrophobic interactions through impacting 
on surface-associated exopolysaccharides and proteins. 
In consistent with our results, Pompilio et al. [57] attrib-
uted the higher hydrophobicity of Stenotrophomonas 
maltophilia biofilm to its higher exopolysaccharides con-
tent, which was positively correlated with biofilm devel-
opment. Also, Mu et  al. [58] manifested and explained 
the same finding in S. epidermidis biofilm. Otherwise, 
several reports documented the independence of biofilm 

Table 2 Representing the correlation between biofilm inhibition with other studied factors (i.e., viability, ePS, protein and 
hydrophobicity) by the action of SCOs

Biofilm type Examined parameter Pearson’s correlation coefficients  (R2)
(P-value)

SCOs-1 SCOs-2

Biofilm Viability ePS Protein Biofilm Viability ePS Protein

P. aeruginosa Viability 0.983 (0.00) 0.961
(0.00)

ePS 0.954 (0.00) 0.985
(0.00)

0.941
(0.00)

0.971
(0.00)

Protein 0.983 (0.00) 0.968
(0.00)

0.943
(0.00)

0.934 (0.001) 0.95
(0.00)

0.987
(0.00)

hydrophobicity 0.926 (0.001) 0.942
(0.00)

0.928 (0.001) 0.911 (0.002) 0.928 (0.001) 0.942
(0.00)

0.984
(0.00)

0.986
(0.00)

S. aureus Viability 0.981 (0.00) 0.976
(0.00)

ePS 0.97 (0.00) 0.984
(0.00)

0.986
(0.00)

0.982
(0.00)

Protein 0.979 (0.00) 0.975
(0.00)

0.941
(0.00)

0.984
(0.00)

0.982
(0.00)

0.992
(0.00)

hydrophobicity 0.932 (0.001) 0.968
(0.00)

0.931 (0.001) 0.951
(0.00)

0.947
(0.00)

0.977
(0.00)

0.97
(0.00)

0.973
(0.00)

C. albicans Viability 0.975 (0.00) 0.958
(0.00)

ePS 0.984 (0.00) 0.984
(0.00)

0.969
(0.00)

0.973
(0.00)

Protein 0.937 (0.001) 0.965
(0.00)

0.965
(0.00)

0.964
(0.00)

0.933 (0.001) 0.986
(0.00)

hydrophobicity 0.879 (0.004) 0.932 (0.001) 0.886
(0.03)

0.88
(0.004)

0.891 (0.003) 0.971
(0.00)

0.95
(0.00)

0.9
(0.002)
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formation on hydrophobicity [53, 59]. Nonetheless, there 
is a consensus among all studies regarding that the cell 
surface properties and overall physiological properties 
of microbes govern the process of biofilm development 
and maturation. Noteworthy mention that the hydropho-
bicity is fostered by the action of microbial appendages 
(e.g., pilli, fimbriae, fibrils, etc.) that scattered on the cell 

surface. Such organelles contain hydrophobic amino acid 
residues that expedite noncovalent attachment of the 
cells on any substratum [54, 55]. However, exopolysac-
charides facilitate irreversible adhesion and sheltering the 
developed cells within the backbone of biofilm [23, 52].

Based on the previous results, it is conspicuous that 
the antibiofilm potency of SCOs samples appeared more 

Fig. 5 Contour plot showing the correlation of biofilm suppression by A‑OS versus EPS inhibition (left panel) and protein inhibition (right panel) 
with cell surface hydrophobicity. The diagram was plotted by Minitab 14 software. Different colors elucidate different levels of biofilm suppression. 
A & B ‑ P. aeruginosa, C & D‑ S. aureus and E & F‑ C. albicans
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evident against S. aureus. That could be attributed to 
its physiological and metabolic sensitivity, besides the 
nature and architecture of its cell wall, which seemed 
to contribute intrinsically in its susceptibility. Namely, 

the hydrophilic nature of gram-positive bacteria’s cell 
wall with their low content of lipids (1–4%) trigger the 
adsorption and penetration processes of exogenous 
materials interiorly easier. In contrast, the more complex 

Fig. 6 Contour plot showing the correlation of biofilm suppression by D‑OS versus EPS inhibition (left panel) and protein inhibition (right panel) 
with cell surface hydrophobicity. The diagram was plotted by Minitab 14 software. Different colors elucidate different levels of biofilm suppression. 
A & D ‑ P. aeruginosa, B & E‑ S. aureus and C & F‑ C. albicans 
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structure of gram-negative bacterial cell wall with its 
abundant hydrophobic moieties (11–22% lipid content) 
serves as potent entry barrier toward detergents and 
hydrophobic molecules, hindering by such way the inter-
nal transportation of SCOs [60]. Strikingly, the superior 
biocidal potency of fatty acids, especially those of longer 
chain FAs (i.e., ≥ C12) against gram-positive bacteria 
such as B. subtilis, Micrococcus luteus, Propionibacterium 
acnes, Listeria monocytogenes and Clostridium difficile 
was reported tremendously by several research groups 
[56, 61–65], which coincident with our results. Addition-
ally, Shukla et al. [62] reported that gram-negative bacte-
ria displayed more resistance to medium- and long-chain 
FAs than gram-positive bacteria, which also agreed with 
our results; however, gram-negative bacteria were more 
susceptible to FAs with C6 or less in their chain. In the 
same context, [60] opined that yeast cells are more sus-
ceptible to medium chain-FA (i.e., C8-C12). Otherwise, 
[63, 66–68] stated the mycocidal potency of long chain-
FA. Herein, both SCOs samples of the present study 
exhibited promising fungicidal performance versus C. 
albicans, which agreed that found by previously men-
tioned studies. Hereby, both oil samples could be har-
nessed in thwarting candidiasis in immunocompromised 
patients following secondary pneumonia infections con-
jugated with COVID-19.

Arguably, the biofilm development by P. aeruginosa, S. 
aureus and C. albicans was dose-dependently impeded 
by both oil samples, which could be ascribed to the 
intensification of detergent traits of FAs on account of 
their amphipathic nature, which could be bacteriostatic 
at lower concentrations and bactericidal at higher con-
centrations [56, 69, 70]. Subsequently, it is imperative to 
shed the light about the antagonistic strategy followed by 
oil against examined pathogens. However, as referred by 
Cepas et al. [66] and Kumar et al. [71] the precise bioc-
idal strategy followed by FAs is obscure and undefined. 
Wherein, FAs frustrate microbial growth and biofilm 
development through violating multiple cellular targets 
nonspecifically, which seems being characteristic and 
should be invested in enfeebling drug resistance phe-
nomena (MDR) [72].

The detrimental effects of FAs against treated biofilm 
commences with the cell membranes, which consid-
ered being the prime target in the multi-step process of 
biofilm formation. Wherein, FAs incorporated on the 
hydrophobic moieties of cell phospholipid layer causing 
membrane solubilization, integrity destabilization and 
apertures creation, either transient or permanent. That in 
turn elevated cell permeability level and cellular leakage. 
Besides, FAs subvert the nutrient uptake system, electron 
transport chain and oxidative phosphorylation which 
are the chief membrane-located processes. Additional 

presumptive scenario could be exerted by oil in the con-
text of membrane damage is suppressing the functional-
ity of membrane-associated proteins, which mediate fatty 
acid biosynthesis in the plasma membrane. Remarkably, 
Firoozabad et al. [73] demonstrated that the destructive 
effect of FAs on S. aureus biofilm was triggered through 
the inactivation of enzyme that is responsible for the fatty 
acid elongation step, which is enoyl-acyl carrier protein 
reductase (Fabl). On the other hand, Cepas and coau-
thors [66] assigned the inhibition of P. aeruginosa and C. 
albicans biofilms to the inhibition of Fabl by the action 
of FAs. Similarly, Lee et  al. [67] attributed the antican-
dida potency of FAs to the hindrance of ergosterol pro-
duction, which regulates fungal membrane synthesis and 
reinforces its structural. On the other hand, the treat-
ment with FAs could enhance autolysis process by induc-
ing autolytic enzyme in lieu of massive solubilization of 
the cell membrane by the surfactant-like action of FAs as 
suggested by Tsuchido et al. [74].

Interestingly, Bintari and Risandiansyah [75]  scru-
tinized in silico the effect of FAs extracted from 
Cladophora sp. in dampening the activity of peptide 
deformylase in P. aeruginosa, E. faecium, E.  coli, and S. 
aureus, which catalyzes protein maturation process. 
Meanwhile, FAs impair ePS production, fimbriae/pili 
formation and hydrophobicity, which thereafter frustrate 
motility and adhesion to substrates; ultimately block the 
microbial colonization and ruin irreversible aggrega-
tion and attachment. The finding by research groups of 
Kim et al. [56], Nicol et al. [76] and Kim et al. [77] sup-
ported these deleterious impacts. On genetic level, FAs 
drastically repressed DNA supercoiling/replication and 
down-regulated different genes such as hla, HWP1, 
CHT4, csgAB, fimH, flhD, motB, luxRS and NorA, which 
encode proteins responsible for alpha-hemolysin produc-
tion, hyphal development, chitinase production, fimbriae 
synthesis, motility, quorum-sensing and efflux pump [63, 
71, 77]. Additionally, anti-quorum sensing activity was 
detected for FAs in quenching the communication sign-
aling and quorum sensing system among biofilm cells 
and with external environment [66, 76]. As referred by 
Nicol et  al. [76], FAs inhibited the biofilm of Acineto-
bacter baumannii up to 38% through reducing quorum 
sensing regulator AbaR, which influenced adversely on 
communication signals among biofilm cells.

Taken together, the overall data revealed the superior 
antibiofilm potentiality of A-OS in defeating all exam-
ined types of biofilm-forming pathogens. That could be 
attributed to the profusion of USFAs (62.18%) compar-
ing to D-OS, which contained 53.15% (Table  1-Fig.  1). 
Our finding is in line with the majority of the previously 
published investigations who declared the lower activ-
ity or bacteriostatic performance of SFAs [69, 78]. While 
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USFAs with the same length carbon backbone exhibit 
influential potency in deteriorating biofilm development 
and obstructing the viability of its cells. Such potency of 
USFAs could be ascribed to their instability, propensity 
to oxidation and binding non-specifically to target sites 
like proteins [69, 78]. Otherwise, Khalilova et  al. [79] 
demonstrated the remarkable antibacterial and antifun-
gal properties of SFAs relative to USFAs, especially capric 
C10:0, lauric C12:0 and palmitic C16:0 acids.

Comparisons among studies are entangled and con-
troversial due to the differences in the applied FAs, the 
treated microbe or even the altogether treatment process 
[69]. Notably, the nature of FAs (i.e., acid or its deriva-
tives such as methyl, ester form, etc.), the applied dose 
and their solitary or combined case were deemed as the 
substantial features concerning FAs entity. However, the 
microbial factor includes microbial species types, iso-
lation source, microbial cell load, microbial phase (i.e., 
planktonic or aggregated biomass), microbial metabolic 
activity and microbial physiology (i.e., sensitive or per-
sister), which are undoubtedly differ among microbial 
genera till strain level. While the contact time, pH value 
and ionic strength of treatment milieu represent other 
influential treatment circumstances. All these reasons 
collectively could definitely influence on biocidal activ-
ity of applied FAs to different extends [60, 80]. Neverthe-
less, the molecular structure and shape of FAs remain the 
driving force that control the magnitude toxicity of FAs. 
Precisely, the carbon chain length, number of unsatura-
tion and the geometric configuration around the double 
bond are the conclusive parameters that correlated pro-
portionally to FAs antagonistic potentiality. As stated by 
McGaw et al. [60], Desbois and Smith [69] and Kim et al. 
[56], FAs that possess more carbon atoms (i.e. C16, C18, 
etc.) in their carbon backbone are more potent antimi-
crobial agents than those contained 10 or 12 carbons in 
their chain. Moreover, USFAs, properly PUFAs followed 
by MUFAs, manifested characteristic biocidal function-
alities than SFAs [69]. In this regard, Feldlaufer et al. [78] 
found that palmitic acid (C16) didn’t show any inhibitory 
action against pathogens comparing to its unsaturated 
counterpart (i.e., palmitoleic acid (C16:1); confirming 
that FAs with 3, 4 or 6 double bonds display more anti-
microbial activity. Strikingly, FAs stereochemistry also 
deemed as limiting factor, namely, the cis-isomer is highly 
active relative to trans configuration [60, 78]. That could 
be ascribed to the resemblance in the structure between 
SFAs and trans orientation USFAs [69]. In this sense, 
Feldlaufer et  al. [78] documented that the introduction 
of double/multiple bonds, especially with FAs more than 
14 carbon atoms in cis- orientation, plays imperative role 
in elevating antibiotic-like behavior. On the other hand, 
McGaw et  al. [60] reported that SFAs with lower-chain 

length, MUFA and PUFAs with longer-chain structure 
exhibit considerable antimicrobial activity.

Remarkably, as indicated by the chromatographic 
profile (Fig. 1; Table 1), A-OS contained ample amount 
of omega (ω) fatty acids such as ω-5 (myristoleic acid, 
C14:1, 0.52%), ω-7 (palmitoleic acid, C16:1, 4.49%) and 
ω-9 (oleic acid C18:1, 24.78%). However, the predomi-
nance of ω-3 (cis-5,8,11,14,17-eicosapentaenoic, C20:5, 
0.65%; Cis-4,7,10,13,16,19-docosahexaenoic, C22:6, 
0.64% and Cis-11,14,17-Eicosatrienoic C20:3 0.60% ) 
and ω-6 (linolenic acid, C18:3, 22.67% and γ-linolenic 
acid, C18:3, 4.22%) contributed intensively in its robust 
effectiveness. It is worthy mention that ω-3 and ω-6 
are frequently utilized as alternative food additives and 
therapeutic agents to maintain body homeostasis and 
enhancing the immune system, by the virtue of their 
functional values in lipid metabolism, antioxidant sign-
aling pathway regulation and inflammatory processes 
modulation. Besides, their role in diabetes type two, 
ulcerative colitis, cardiovascular disease, Crohn’s dis-
ease, hypertension, alzheimer’s disease and cancer ther-
apy couldn’t be neglected [62, 68, 73]. Meanwhile, their 
potency in defeating various microbial genera as anti-
bacterial, antifungal or antibiofilm was also determined 
in various investigations [68, 79].

In the study conducted by Cepas et  al. [66], the 
authors detected the inhibitory limit of linolenic acid by 
1, 32 and 64 mg/mL against C. albicans, S. aureus and P. 
aeruginosa, respectively. Also, he and coauthors found 
that more than 250  mg/mL of stearic acid, γ-linolenic 
acid, arachidonic acid and palmitoleic acids were 
required to utterly block the growth of E. coli. While, 
0.02 mg/mL of palmitoleic acids inhibited the biofilm of 
A. baumannii by 38% [76]. Comparing our results with 
previous studies and others, reflects the advantageous 
and promising properties of our SCOs that dampened 
biofilm activity, their cell viability, biochemical constitu-
ent and their hydrophobicity in sensible doses. That 
could be assigned to the synergistic effect mediated by 
the combination of SFAs, MUFAs and PUFAs collec-
tion. Strikingly, the naturally derived lipids from herbal 
and microbial sources share this common phenomenon. 
Namely, the presence of mixture of FAs that compete 
mutually on more than target site could implement 
their hostile functionality in prominent way. The results 
of the present research concurred with that reported by 
Dia and Jacoeb [81], Shukla et al. [62], Balkrishna et al. 
[72] and Panjaitan et al. [80]. In the context of synergis-
tic activity, several reports accentuated the uplifting of 
antibiotic-like performance of FAs upon conjugating 
several FA together or supplementing with antibiotics, 
bacteriophages, organic compounds, enzymes and edi-
ble plant essential oils [63, 82–86].
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Safety and anticancer activities of oil samples
The cytotoxicity results of oil samples on the non-can-
cerous cell line (Wi-38) indicated that the D-OS was 
safe treatment on the viability of these non-cancerous 
cells with IC50 25.8% followed by A-OS with IC50 value 
of 23.86% (Figs. 7A and 8). As a second-leading reason 
of death, the continuous amending in cancer treatment 
modalities is intensively implementing. The most widely 
options of cancer treatment for many decades are sur-
gery, chemotherapy and radiation therapy, in a sin-
gle treatments or in combination (Debela et  al., 2021). 

Actually, pain and fatigue are the mainly harmful side 
effects of conventional therapies modality, besides, dos-
age selection difficulty, rapid drug metabolism, cyto-
toxicity and lack of tumor-specific treatments [87, 88]. 
Henceforth, utilizing fungal bioactive compounds such 
as SCOs considers being promising, complementary 
and alternative therapy to reduce cancer complications 
and improve the therapeutic efficacy [89].

Concerning with the anticancer effects of the A-OS and 
D-OS, the MTS assay protocol showed that the oil sam-
ple D-OS is the most potent cytotoxic agent against both 

Fig. 7 Cytotoxicity results of the oil samples on noncancerous (A) and cancerous cell lines (B and C)

Fig. 8 The IC50 values of the oil samples on the non‑cancerous and cancerous cell lines (A), selectivity index (SI) against cancer cells (A549 
and CaCo‑2) (B), and morphological variations in the treated cancer cell lines relative to the untreated cells (C)
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A549 and CaCo-2 cell lines with IC50 values of 2.55 and 
3.425%, respectively (Figs. 7B and 8) and SI values of 10.1 
and 7.5, respectively (Fig. 8). Furthermore, A-OS showed 
a potent effect against CaCo-2 cell line with IC50 8.275% 
(Fig.  8A) and SI value of 2.88 (Fig.  8B). D-OS was safer 
than A-OS on the viability of normal cells (Wi-38) with 
IC50 value that was 10-fold higher than its correspond-
ing concentrations for inhibiting 50% growth of CaCo-2 

and A549. Meanwhile, another oil sample (i.e., A-OS) had 
a higher IC50 for A549 growth inhibition than its cyto-
toxic dose on Wi-38. This declares that D-OS is more 
selective cytotoxic oil than A-OS against both studied 
cancer cell lines. Importantly, A-OS activated caspase 3 
by 64.23 ± 1.18% and 53.77 ± 0.995% more effectively than 
D-OS (52.09 ± 0.222% and 49.72 ± 0.952%) in A549 and 
Caco-2 cells, respectively (Fig.  9). In a dose-dependent 
manner, A-OS exhibited stronger inhibitory effect on 
MMP2 and MMP9 with lower IC50 values (18.58% and 
8.295%, respectively) than D-OS (23.61% and 13.16%, 
respectively) as shown in Fig. (10). Attractively, the poly-
unsaturated fatty acids (PUFAs) especially, ω-3 and ω-6 
were recorded as selectively induced tumor cells apopto-
sis. The sensitivity of various cancer cells to different fatty 
acids were found to be variable depending on the type of 
cancer cell being tested and also the types and concen-
trations of the tested fatty acid [90]. Different research 
articles explained the positive effects of ω-6 fatty acids 
in controlling the human lung tumor cell growth in a 
concentration-dependent manner [91]. Furthermore, 
ω-3 PUFA triggers cancer cell apoptosis and synergizes 
to increase the sensitivity of tumor cells to conventional 
therapies, with interesting applications in cancers resist-
ant to treatment [92]. According to Madhavi and Das 

Fig. 9 Caspase 3 activation percentages in D‑OS and A‑OS treated 
A549 and Caco‑2 cells

Fig. 10 Dose response curves of A‑OS‑and D‑OS for (A) matrix metalloproteinase MMP2 and (B) MMP9 inhibition as well as (C) their IC50 values
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[93], AA, GLA, DHA and EPA were found to be the 
greatest effective in inhibiting tumor cells growth com-
paring to ALA and LA that recorded lower effects even at 
higher concentrations. Kumar and Das [94] proved that 
linoleic acid at concentration of 40 µg/mL had the ability 
to inhibit cancer cells, whereas, the lower concentrations 
(5–10 µg/mL) enhanced the growth of nearly all types of 
cancer cells that were being tested in such study.

This tumoricidal action of fatty acids could be attrib-
uted to the increase in the generation of free radicals in 
the tumor cells [90]. Moreover, there is an evidence indi-
cating that ω-6 PUFA and LA can be involved in both 
pro- and anti-cancer processes. For example increased 
the proliferation of the breast carcinoma cell line (BT-
474 cell line) and the human lung cancer cell line (A549) 
in vitro, as well as promoting colon and prostate tumo-
rigenesis and tumor growth in animal models [95, 96]. 
On the other hand, a high dose of LA could inhibits the 
proliferation of the colon cancer cell line (Caco-2) [97], 
while a high intake of LA can also show a protective 
effect against cancer development [98]. Based on this 
theory, different literatures proved the anticancer lever-
ages of fatty acids, at least partly owing to their proap-
optotic effects, especially against colorectal cancer (e.g., 
Caco-2, HT-29, HCT116, LoVo, SW480 and SW620 cell 
lines) [99], MHCC97L hepatocellular carcinoma cell line 
[100] and LNCaP, DU145 and PC-3 prostate cancer cell 
lines [101]. Furthermore, dihomo-γ-linolenic acid proved 
selective cytotoxic effects against A549 lung cancer cell 
line without affecting the normal cells [102]. Remark-
ably, the activation of caspases is the primary indicator 
of apoptosis-mediated cancer cell death. Caspase 3 is 
one particular caspase whose activation causes irrevers-
ible cell death. Previous studies illustrated that hen egg 
yolk PUFAs and Fish oil-enriched PUFAs activated cas-
pase 3 in the treated melanoma cells and breast cancer, 
respectively [10, 103]. Moreover, both MMP2 and MMP9 
are considered the main contributors in mediating inva-
sion and metastasis of lung and colon cancers [104, 105]. 
PUFA (ω-3 and ω-6 fatty acids) revealed high inhibition 
potency in suppressing both MMP2 and MMP9 activities 
[11, 13, 29].

Finally, the former results of anticancer and antibi-
ofilm proficiency of SCOs could be symbolized as pro-
spective contenders for prophylactic programs by the 
dint of their environmentally-sound and biocompatibil-
ity. Besides, their unspecific mode of action triggers the 
appearance of mutant phenotypes with FAs-resistance 
is less problematic than commercial drugs. In this ave-
nue, SCOs of the present study deemed as promising 
alternative anti-infective agents in various biotechno-
logical applications like agriculture, medicine, nutra-
ceuticals, feed additives and the cosmetic formulations. 

Presently, studies are profoundly under way to examine 
the efficacy of our SCOs in combinatorial treatment 
or drug amalgamation strategy with metal/ poly-
mer nanomaterials, in lieu of using single agent. Such 
nanoformulations composites would be employed as 
an alternative wound dressing material in  vitro study. 
Also, their exploitation as an anti-acne agent in skin 
ointments or gels is also run in parallel. However, in the 
avenue of food technology synchronizing with exploit-
ing higher nutritional value of SCOs, which are rich in 
ω-3 and ω-6, oral tablets of SCOs and probiotics would 
be designed for promoting indigenous microbiota to 
facilitate the digestion process in human and livestock.

Conclusion
This study highlighted the potency of the two ole-
aginous fungi (Alternaria sp. and Drechslera sp.), as 
promising factories, for their remarkable capabil-
ity in economic production of ecologically friendly 
SCOs based on whey, as the main nutritive substrate. 
Fatty acid profile of both fungi revealed the presence 
of appreciated unsaturated fatty acids, which dis-
played superior anti-biofilm and anticancer activity. 
The overall data demonstrated antibiofilm potential-
ity of Alternaria oil sample in defeating all examined 
types of biofilm-forming pathogens comparing to 
Drechslera oil sample. On the other hand, data revealed 
that Drechslera oil sample is the most potent antican-
cer treatment against both A549 and CaCo-2 cell lines. 
Thus, the data gained from this study opens new per-
spectives in the field of biotechnology and considers 
superlative solution for the coming years to support 
cancer therapy and biofilm causing infections.
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