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of microorganism-based industries as practical alterna-
tives. These technologies have led to the inception of the 
production of diverse industrial products by converting 
greenhouse gases and C1 compounds such as CO2, CH4, 
and green methanol. This approach not only leverages 
bioconversion technologies but also plays a crucial role 
in mitigating environmental greenhouse gas emissions, 
addressing key challenges in sustainability [1, 2].

Free fatty acids (FFAs) are critically important across 
various industries, serving as the preferred precursors for 
synthesizing a range of fatty acid derivatives. A notable 
characteristic of FFA is their straightforward conversion 
into a diverse spectrum of biofuels, which further under-
scores the role of FFA in advancing sustainable energy 
solutions. Biodiesel, the most well-known and commer-
cially produced biomass-derived diesel fuel, consists of 
mono-alkyl esters of long-chain fatty acids. Tradition-
ally, biodiesel is synthesized from plant oils via chemical 

Introduction
The relentless expansion of petroleum-based indus-
tries has exacerbated greenhouse gas emissions, con-
tributing significantly to environmental issues such as 
climate change. This ongoing environmental degrada-
tion highlights the urgent necessity for a shift toward 
more sustainable industrial practices to mitigate their 
adverse effects on our lives. Advancements in metabolic 
engineering and synthetic biology have led to the rise 
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Abstract
The biological production of lipids presents a sustainable method for generating fuels and chemicals. Recognized 
as safe and enhanced by advanced synthetic biology and metabolic engineering tools, yeasts are becoming 
versatile hosts for industrial applications. However, lipids accumulate predominantly as triacylglycerides in yeasts, 
which are suboptimal for industrial uses. Thus, there have been efforts to directly produce free fatty acids and 
their derivatives in yeast, such as fatty alcohols, fatty aldehydes, and fatty acid ethyl esters. This review offers a 
comprehensive overview of yeast metabolic engineering strategies to produce free fatty acids and their derivatives. 
This study also explores current challenges and future perspectives for sustainable industrial lipid production, 
particularly focusing on engineering strategies that enable yeast to utilize alternative carbon sources such as 
CO2, methanol, and acetate, moving beyond traditional sugars. This review will guide further advancements in 
employing yeasts for environmentally friendly and economically viable lipid production technologies.
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transesterification—a process that is becoming prob-
lematic for large-scale commercial viability due to the 
cost and availability of feedstocks. Moreover, a surplus 
of alcohol is frequently necessary to drive the reaction 
towards near completion, further increasing production 
costs. In response, recent efforts have focused on directly 
producing fatty acid ethyl esters (FAEEs) in vivo to create 
more sustainable forms of biodiesel [3–5].

Yeast engineering has extended efforts to produce other 
FFA-based products, such as fatty alcohols (FAs) and 
fatty alkanes (FALKs) directly in vivo. FAs, long-chain 
hydrocarbons with over ten carbon atoms and a terminal 
–OH group, are utilized in various applications, includ-
ing lubricants, surfactants, cosmetics, pharmaceuticals, 
agricultural chemicals, plastic polymerization agents, 
textile coatings, personal care commodities, mineral 
processing substances, and fuels [6]. Another vital class 
of hydrocarbons is FALKs, which are utilized as primary 
liquid fuels for transportation and in the manufacturing 
of plastics, being key components of petrol, diesel, and 
jet fuel. Terminal alkenes, also known as olefins, possess 
a high energy density and exhibit comparable storage, 
transportation, and combustion properties to current 
liquid transportation fuels, rendering them advantageous 
for synthesizing polyethylene, lubricants, and detergents 
[7].

Yeast-based platforms have attracted significant atten-
tion due to progress in metabolic engineering and syn-
thetic biology, along with the designation of several yeast 
species under the Generally Recognized as Safe (GRAS) 
status. Among various yeast species, Saccharomyces cere-
visiae and Yarrowia lipolytica have been widely studied 
for producing fatty acid-derived hydrocarbons. S. cere-
visiae is valued for its robustness, capable of thriving in 
low pH and challenging environmental conditions, and is 
well-equipped with genetic tools that facilitate metabolic 
engineering [8, 9]. Numerous studies with S. cerevisiae 
engineering have been conducted to produce biofuels 
such as bio-ethanol. Y. lipolytica, known for oleaginous 
yeast, has attracted significant interest due to its abil-
ity to accumulate high lipid content [10]. Recently, Rho-
dosporidium toruloides, another oleaginous yeast, has 
shown promising results in the production of FFA and 
FAEE [11, 12]. Additionally, the ability of methylotrophic 
yeasts to metabolize methanol has opened new avenues 
for research, with multiple studies exploring the potential 
of engineered yeasts to transform methanol and CO2 into 
lipids [13, 14]. Pichia pastoris and Ogataea polymorpha, 
methylotrophic yeasts, have demonstrated their efficacy 
in producing fatty acid-derived hydrocarbons from sus-
tainable one-carbon (C1) feedstock methanol [15–17]. 
The use of yeast platforms for synthesizing fatty acids 
and their derivatives thus holds significant promise for 
advancing sustainable industrial processes.

This review comprehensively examines the recent 
advancements in metabolic engineering strategies 
designed to enhance the biosynthesis of fatty acids and 
their derivatives (FA, FAEE, and FALK) in yeast. Addi-
tionally, this review aims to introduce strategies for 
metabolizing CO2 and methanol in yeast and to discuss 
lipid metabolism approaches. It will also present effective 
strategies for future research on lipid production based 
on C1 compounds, illustrating the potential advance-
ments in yeast-based biotechnological applications con-
tributing to an environmentally friendly and renewable 
energy future.

Metabolic engineering strategies for free fatty acid (FFA) 
production
In microbial systems, lipids are typically stored as tria-
cylglycerides (TAGs), which limits their direct usability. 
However, compared to TAGs, FFAs are critical precur-
sors for the synthesis of a wide variety of compounds for 
extensive industrial applications. Therefore, biologically 
deriving FFAs presents a highly feasible and economically 
viable method. This chapter summarizes the metabolic 
engineering strategies for producing FFAs in yeast (Fig. 1; 
Table 1).

Enhancement of acetyl-CoA and malonyl-CoA pools
Acetyl-CoA and malonyl-CoA are crucial intermediates 
in the biosynthetic pathway of fatty acids (Fig. 1). A pyru-
vate dehydrogenase (PDH) complex plays a role in con-
verting pyruvate to acetyl-CoA [18, 19]. The conversion 
of acetyl-CoA to malonyl-CoA, catalyzed by acetyl-CoA 
carboxylase (ACC), marks the beginning of fatty acid syn-
thesis. Malonyl-CoA acts as the two-carbon donor in the 
chain-elongation process of fatty acid synthesis, which 
continues until the desired chain length is achieved. 
Zhang et al. (2020) demonstrated that introducing the 
cytosolic pyruvate dehydrogenase (cPDH) complex 
from Enterococcus faecalis into S. cerevisiae significantly 
enhanced the cytosolic acetyl-CoA pool, resulting in an 
enhanced FFA production. In this study, while a parental 
strain of S. cerevisiae (ΔFAA1/4, ΔPOX1, ΔHFD1) pro-
duced FFA at 458.9  mg/L, the introduction of the PDH 
protein complex increased the FFA titer to 512.7  mg/L 
[20]. Additionally, ACC1 overexpression can enhance 
malonyl-CoA pools and subsequently increase FFA titers 
in yeast [21–24]. In an engineered strain of Y. lipolytica 
(ΔGPD1, ΔGUT2, ΔPEX10), the initial FFA production 
was quantified at a level of 382.8  mg/L. However, the 
overexpression of ACC1 significantly increased the titer 
to 1436.7  mg/L, representing a 3.7-fold enhancement 
in comparison to the parental strain [23]. Zhou et al. 
(2016b) replaced the native promoter of the ACC1 gene 
with the strong TEF1 promoter in S. cerevisiae, resulting 
in the production of 10.4 g/L of FFAs, while the parental 
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strain (ΔPOX1, ΔFaa1/4, ΔHFD1, ‘TesA↑, RtFAS↑) pro-
duced only 7.0 g/L [22].

Directing fatty acyl-CoA to FFAs production with the 
inhibition of TAG, SE, and phospholipid synthesis
The conversion of malonyl-CoA to fatty acyl-CoA is a 
critical step in fatty acid synthesis, where each elonga-
tion cycle adds two carbons to the growing fatty acyl 
chain (Fig. 1). The fatty acid synthetase (FAS1 and FAS2) 
elongates this carbon chain, ultimately forming fatty acyl-
CoA, a direct precursor for FFAs. Heterologous type-I 
FAS from Brevibacterium ammoniagenes (baFAS) (Erik-
sen et al., 2015), Rhodosporidium toruloides FAS (RtFAS1 
and RtFAS1) [22] or endogenous FAS1/FAS2 from S. 
cerevisiae [25] were employed to enhance fatty acyl-CoA 
production. For instance, the expression of baFAS in the 
ΔFAS1 S. cerevisiae strain resulted in a 2.75-fold increase 

in palmitic acid production compared to the parental 
strain [26].

Thioesterases play a pivotal role by converting fatty 
acyl-CoA into FFAs, thereby inhibiting their stor-
age as TAGs or sterol esters (SEs). A truncated version 
of acyl-CoA thioesterase (Acot5s) from Mus musculus 
was expressed in the cytoplasm of S. cerevisiae, result-
ing in improved FFA synthesis, achieving up to 500 µg/
mL in batch cultivation [21]. The overexpression of E. 
coli acyl-ACP thioesterase ‘TesA in S. cerevisiae resulted 
in the production of 5 mg/L of FFAs, an 8-fold increase 
in comparison to the background strain [25]. Zhou et al., 
(2016b) also overexpressed ‘tesA in S. cerevisiae, which 
resulted in the production of 0.67 g/L FFA [22]. In Y. lipo-
lytica, coupling the overexpression of FAS1 with thioes-
terase from E. coli led to production levels reaching 
1.3 g/L in shake flasks and up to 9 g/L in bioreactors [24]. 

Fig. 1  A schematic overview of metabolic engineering strategies for producing FFAs in yeasts. Glucose, methanol, CO2, and its derivative formate repre-
sent the initial carbon source. Overexpressed genes and knocked-out genes are shown in blue and red, respectively. Abbreviations: ACC1, acetyl-CoA car-
boxylase; ACL, ATP: citrate lyase; ACS, acetyl-CoA synthetase; ARE, sterol acyltransferases; CBB cycle, Calvin-Benson-Bassham cycle; CTP, citrate transporter; 
DAG, diacylglycerol; DAS, dihydroxyacetone synthase; DGA, diacylglycerol acyltransferases; DHA, dihydroxyacetone; FAA/FAT, fatty acyl-CoA synthetas-
es; FAS, fatty acid synthetases; FDH, formate dehydrogenase; G3P, glyceraldehyde 3-phosphate; GapN, glyceraldehyde-3-phosphate dehydrogenase; 
GPD, glycerol-3-phosphates; LRO, diacylglycerol acyltransferase; MDH, malate dehydrogenase; ME, malic enzyme; MFE, multifunctional enzymes; 3PG, 
3-phospho-glycerate; PAH/LPP/DPP/APP, phosphatidate phosphatases; PDH, pyruvate dehydrogenase; PEX10, peroxisome synthetase; PL, phospholipid; 
POX, peroxisomal acyl-CoA oxidase; PRK, phosphoribulokinase; PXA, peroxisomal acyl-CoA transporter; Pyr, pyruvate; SE, sterol esters; RuBisCO, ribulose 
1,5-bisphosphate carboxylase/oxygenase; RuBP, ribulose 1,5-bisphosphate; TAG, triacylglycerol; TE/ACOT5/RnTEII/‘TesA, thioesterases; TGL, triacylglycerol 
lipases; Xu5P, xylulose 5-phosphate; XuMP cycle, xylulose monophosphate cycle
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An engineered strain of Y. lipolytica (ΔARE1, ΔDGA1/2, 
ΔLRO1, ΔFAA, ΔMFE1), lacking neutral lipid synthesis 
pathways (TAG/SE), significantly increased FFA produc-
tion from 730 mg/L to 3 g/L upon overexpressing a cyto-
solic thioesterase from Rattus norvegicus (RnTEII) [27].

In Y. lipolytica, the production of ricinoleic acid (RA) 
via the cytidine diphosphate diacylglycerol (CDP-DAG) 
pathway was achieved by regulating lipid flux towards 
the phosphatidylcholine (PC) and oleic acid (OA) pool. 
This enhancement began with the overexpression of the 
CpFAH12 encoding fungal Δ12 oleate hydroxylase from 
Claviceps purpurea, combined with the deletion of the 

TAG synthesis pathway (ΔDGA1). Further amplification 
of the phospholipid pool was achieved by overexpressing 
several key genes: CDS1 (phosphatidate cytidylyltrans-
ferase), PSD1 (phosphatidylserine decarboxylase), CHO2 
(phosphatidylethanolamine N-methyltransferase), and 
OPI3 (phosphatidyl-N-methylethanolamine N-methyl-
transferase). Finally, the overexpression of fatty acid elon-
gase from Mortierella alpine (MaC16E) led to 2.061 g/L 
RA acid production [28].

FFAs can also be generated by remodeling TAGs, 
where triacylglycerol lipases (TGL) break down TAGs 
into FFAs. In S. cerevisiae, a genetically modified strain 

Table 1  Summary of metabolic engineering strategies for free fatty acid production in yeasts
Strain Metabolic engineering strategies Medium 

and carbon 
sources

Results Fatty acid composition (%) Ref-
er-
ences

Yarrowia 
lipolytica

Overexpression of DGA2, TGL4 and KlTGL3; deletion 
of FAA1 and MFE1

YNB, glucose 2.8 g/L (batch), 
10.4 g/L 
(fed-batch)

C16:0, C16:1, C18:0, C18:1, 
C18:2

 [27]

Overexpression of RnTEII; deletion of DGA1, DGA2, 
LRO1, ARE1, FAA1 and MFE1

YNB, glucose 3 g/L (batch) C16:0, C16:1, C18:0, C18:1, 
C18:2

 [27]

Overexpression of truncated hFAS-EcTesA′ YNB, glucose 1.3 g/L (batch), 
9.67 g/L 
(fed-batch)

C12:0 (7.5%), C14:0 (29.2%), 
C16:0, C16:1, C18:0, C18:1, 
C18:2

 [24]

Overexpression of ACC1; deletion of GPD1, GUT2 
and PEX10

YNB, glycerol 
and glucose

2 g/L (batch) C16:0 (9.6%), C16:1 (9.8%), 
C18:0 (6.9%), C18:1 (46.7%), 
C18:2 (20.4%), C20:0 (0.7%), 
C22:0 (0.7%), C24:0 (4.1%)

 [23]

Overexpression of MaC16E, CDS1, PSD1, CHO2, OPI3, 
and CpFAH12; deletion of MEF1, PEX10, FAD2, PAH1, 
APP1, MHY1, and DGA1

YNBR, glucose 2 g/L (batch) C18:1-OH, (74%), C18:2 (11%), 
C16:0, C16:1, C18:0, C18:1 (15%)

 [28]

Saccharomyces 
cerevisiae

Overexpression of ACC1, FAS1, FAS2 and ‘TesA; dele-
tion of PXA2, POX1, FAA1 and FAA4

MM, glucose 400 mg/L (batch) C12:0 (2.7%), C14:0 (9.4%), 
C16:0 (47.0%), C16:1 (19.3%), 
C18:0 (10.4%), C18:1 (10.7%)

 [25]

Overexpression of ACOT5; deletion of FAA1 and 
FAA4

YNBD, glucose 500 µg/ml (batch) C16:0, C16:1, C18:0, C18:1  [21]

Overexpression of DGA1 and TGL3; deletion of FAA1, 
FAA2, FAA4, FAT1, PXA1 and POX1

YPD, glucose 2.2 g/L (batch) C16:0, C16:1, C18:0, C18:1  [29]

Overexpression of CTP1, RtME, MDH3, MmACL, 
RtFAS, ACC1 and ‘TesA; deletion of HFD1, FAA1, FAA4 
and POX1

MM, glucose 1 g/l (batch), 
10.4 g/l (fed-batch)

C16:0, C16:1, C18:0, C18:1  [22]

Overexpression of the cPDH and GapN; and dele-
tion of GPD1, GPD2, PAH1, LPP1, DPP1 and ARE1

MM, glucose 840.5 mg/L (batch) C16:0, C16:1, C18:0, C18:1  [20]

Overexpression of FDH and CBBm MM, CO2, 
formate, and 
glucose

10.1 g/L 
(fed-batch)

C16:0, C16:1, C18:0, C18:1  [30]

Overexpression of ACS and FDH MM, acetate, 
glucose and 
formate

6.6 g/l (fed-batch) C16:0, C16:1, C18:0, C18:1  [31]

Starmerella 
bombicola

Deletion of FAA1 and MFE2 Lang produc-
tion media, 
glucose

0.933 g/L (batch) C16:0 (13.2%), C18:0 (40%), 
C18:1 (43.8%)

 [32]

Pichia pastoris Overexpression of MmACL, DAS2, XFPK, ScIDP2 and 
PTA; deletion of FAA1 and FAA2

MM, methanol 5.1 g/L (batch), 
23.4 g/L 
(fed-batch)

C16:0, C16:1, C18:0, C18:1, 
C18:2

 [15]

Ogataea 
polymorpha

Overexpression of FBP1, RPE, MmACL, ZWF1, ScIDP2, 
AOX1, DAS and DAK; deletion of FAA1, LPL1 and IZH3

MM, methanol 15.9 g/L 
(fed-batch)

C16:0 (30–40%), C16:1 (< 5%), 
C18:0 (< 5%), C18:1 (20–30%), 
C18:2 (30–40%)

 [16]
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co-overexpressing TGL3 and DGA1 produced up to 
2.2  g/L of extracellular FFAs [29]. Similarly, in Y. lipo-
lytica, employing a comparable engineering strategy 
involving the overexpression of TGL3, TGL4, and DGA2 
achieved a FFAs production level of 2.8 g/L [27].

Additionally, the complete elimination of phospholipid 
synthesis from FFAs through the deletion of phosphati-
date phosphatase genes (PAH1, APP1, DPP1, LPP1) fur-
ther enhanced FFA production [20, 28].

Inhibition of beta-oxidation
Blocking competing metabolic pathways is a general 
approach to direct and enhance the carbon flux towards 
desired products. Thus, one of the critical strategies for 
FFA production involves eliminating the β-oxidation 
pathway, which naturally degrades fatty acids into acetyl-
CoA in the peroxisome, thereby preventing the poten-
tial recycling of FFAs into unwanted metabolic products 
(Fig.  1). In the β-oxidation cycle, the peroxisomal acyl-
CoA transporter (PXA1), POX1, and multifunctional 
enzymes (encoded by MFE1, MFE2) have been mainly 
targeted for deletion. Additionally, inhibiting peroxisome 
synthesis through the deletion of peroxisome synthetase 
(PEX10), which is crucial for peroxisome biogenesis, 
prevents FFAs from being converted into β-oxidation 
products [23, 28]. Further measures include disrupting 
fatty acyl-CoA synthetases, namely FAA1, FAA2, FAA4, 
and FAT1. These genes are responsible for converting 
FFAs back into fatty acyl-CoA, and their inhibition is 
vital for ensuring that fatty acids are not recycled in the 
β-oxidation cycle but instead accumulate as FFAs [20–22, 
24, 27, 29–32]. Deleting these enzymes makes it possible 
to prevent the reconversion process of fatty acid, thus 
promoting the accumulation of FFAs instead of their re-
utilization as fatty acyl-CoA. However, the reduction of 
the β-oxidation was synergetic when it was applied to 
other FFA enhancement strategies. Thus, this strategy is 
not usually used solely.

Enhancing cofactor (NADPH) supply
The synthesis of fatty acids in yeast critically relies on an 
adequate supply of NADPH, which acts as a reducing 
equivalent. This cofactor is pivotal for the reductive steps 
that transform acetyl-CoA and malonyl-CoA into longer-
chain fatty acids. Specifically, NADPH supplies the nec-
essary electrons for the reduction reactions catalyzed 
by the fatty acid synthase complex (FAS). This complex 
condenses acetyl-CoA and malonyl-CoA into acyl-CoA. 
Each step in this elongation process requires two mole-
cules of NADPH to reduce the carbonyl group of the acyl 
intermediates, thereby enabling further chain extension. 
Consequently, a deficiency in NADPH can significantly 
hinder the production of fatty acids [10, 33, 34]. Thus, 
various NADPH-dependent enzymes involved in lipid 

synthesis have been employed for metabolic engineer-
ing. Chen et al. (2016) overexpressed NADP+-dependent 
aldehyde dehydrogenase to enhance the cellular pool of 
NADPH. Indeed, this augmentation supports fatty acid 
synthesis by providing a robust supply of reducing equiv-
alents [9]. The introduction of NADP+-dependent glyc-
eraldehyde-3-phosphate dehydrogenase (GapN) from 
Streptococcus mutans enabled the irreversible conversion 
of glyceraldehyde-3-phosphate to 3-phosphoglycerate, 
thereby producing NADPH. This modification enhanced 
the production of FFA and FAEE while reducing glycerol 
synthesis [20, 35]. Another strategic modification in S. 
cerevisiae involved redirecting carbon flux towards glu-
tamate biosynthesis by deleting the NADPH-dependent 
glutamate dehydrogenase (GDH1). This change signifi-
cantly improves NADPH availability, increasing the FFA 
pool for FA synthesis [36]. In Y. lipolytica, the use of a 
microbial electrosynthesis (MES) system proved effective 
in converting electrons directly into NADPH, resulting 
in a 2.79-fold increase in the NADPH/NADP+ ratio and 
enhancing the production of FAs from acetate [37].

Metabolic engineering strategies for FFA-derived 
products
We have introduced various metabolic engineering strat-
egies aimed at augmenting the production of FFAs. Mov-
ing forward, this chapter will discuss diverse engineering 
strategies that have been implemented to synthesize fatty 
alcohols, fatty alkyl ethyl esters, and fatty alkanes in yeast 
in vivo, using FFAs or fatty acyl-CoA as the starting sub-
strates (Fig. 2; Table 2).

Fatty alcohol (FA)
The production of FAs typically begins with the pre-
cursors, fatty acyl-CoA or fatty acyl-ACP, which are 
converted by fatty acyl-CoA reductases (FAR) (Fig.  2). 
Indeed, the heterologous overexpression of FAR from 
Marinobacter aquaeolei successfully enhanced FA pro-
duction in Y. lipolytica (5.8 g/L), L. starkeyi (770 mg/L), P. 
pastoris (2 g/L), and R. toruloides (8 g/L) [11, 15, 38, 39]. 
Additionally, the heterologous expression of FAR from 
Mus musculus effectively converted fatty acyl-CoA into 
FAs, leading to production levels of up to 6.0  g/L in S. 
cerevisiae with endoplasmic reticulum localization [36]. 
Similarly, the expression of TaFAR1 from Tyto alba facili-
tated the production of hexadecanol from glucose in S. 
cerevisiae and Y. lipolytica, achieving yields of 655 mg/L 
and 636 mg/L, respectively [40, 41].

An alternative two-enzyme pathway for FA produc-
tion involves initially reducing FFAs to the fatty aldehyde 
using carboxylic acid reductase (CAR), followed by con-
version to FA via endogenous aldehyde reductases (ALR) 
or alcohol dehydrogenases (ADH) [6]. This pathway was 
successfully operated with CAR from Mycobacterium 
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marinum and endogenous ALR or ADH in S. cerevisiae 
[22, 42–44]. Furthermore, it was also effective in blocking 
the reversible reaction of fatty aldehyde to FFA by delet-
ing HFD1 [15, 17, 22, 36, 42, 44–46].

FA production primarily derives from FFA or fatty acyl-
CoA. Therefore, strategies that enhance fatty acid and 
fatty acyl-CoA pools are critical alongside those directly 
aimed at producing FAs. Thus, it is required to inhibit 
pathways that reactivate FFAs to fatty acyl-CoA (ΔFAA1, 
ΔFAA4), initiate β-oxidation (ΔPXA1, ΔPOX1, ΔPEX10), 
or utilize fatty acyl-CoA to synthesis sterol ester (ΔARE1, 
ΔARE2) and triacylglycerol (ΔDGA1, ΔLRO1). These 
modifications enhance the production of FFA and subse-
quently increase FA synthesis [22, 36, 42, 43, 47, 48]. The 
combined deletion of HFD1 and ADH6, along with the 
inhibition of fatty acid degradation to fatty acyl or acetyl-
CoA (ΔPOX1, ΔFAA1/4), co-expression of ADH5, FAR, 
and CAR, achieved production levels of up to 1.5 g/L FA 
under glucose-limited fed-batch cultivation in S. cere-
visiae [22]. By expressing CAR combined with an acyl 
carrier protein activation module, phosphopantethei-
nyl transferase (BsuSfp) from Bacillus subtilis, the direct 
conversion of FFAs into FAs was achieved in a modified 
strain of S. cerevisiae (ΔFAA1/4, ΔDGA1, ACOT↑), pro-
ducing 31.2  mg/L [47] In a FFA overproducing strain 
(ΔFAA1/4, TE↑) of S. cerevisiae, the overexpression of 
rice α-dioxygenase (αDOX) converted intracellular even-
chain-length FFAs into odd-chain-length fatty aldehydes 
through oxidative decarboxylation. These fatty aldehydes 
are subsequently reduced to FAs by endogenous NAD(P)

H dependent ADH, producing 20 mg/L of FAs (Jin et al., 
2016).

Fatty alkyl ethyl ester (FAEE)
FAEEs are synthesized through a transesterification reac-
tion that converts fatty acyl-CoA with endogenous or 
exogenous ethanol, catalyzed by wax ester synthase (WS) 
(Fig.  2) [49]. Several studies demonstrated the produc-
tion of FAEE in S. cerevisiae and Y. lipolytica by overex-
pressing WS2 from Marinobacter hydrocarbonoclasticus 
[50–53]. To improve endogenous ethanol production for 
FAEE synthesis, pyruvate decarboxylase (PDC) and ADH 
from high ethanol-producing strains such as Z. mobi-
lis or S. cerevisiae have been overexpressed [50–52, 54]. 
Additionally, adding external ethanol also increases FAEE 
production [51, 52, 55]. For instance, the overexpression 
of WS2 with two heterologous genes, PDC1 and ADH1, 
from S. cerevisiae and adding of 2% exogenous ethanol 
resulted in an FAEE titer of 360.8  mg/L in Y. lipolytica 
[52].

Furthermore, in order to augment the amount of fatty 
acyl-CoA, many studies blocked the β-oxidation and 
TAG/SE synthesis pathways utilizing fatty acyl-CoA as a 
substrate [24, 50, 51, 53, 54, 56, 57]. In Y. lipolytica, over-
expressing acetyl-CoA synthetase (ACS2), ACC1, and 
ATP-citrate lyase (ACL1, ACL2) enhanced metabolic 
flow towards acetyl-CoA. Moreover, deleting PEX10 
and DGA1 restricted the β-oxidation and TAG pro-
duction pathways. This strategy, combined with WS2, 
PDC1, ADH4 overexpression, and the addition of 5% 

Fig. 2  A schematic overview of metabolic engineering strategies for producing FA, FAEE, and FALK in yeasts. Overexpressed genes and knocked-out 
genes are shown in blue and red, respectively. Abbreviations: ADC, aldehyde decarbonylase; ADH, alcohol dehydrogenases; ADO, aldehyde deformylating 
oxygenase; ALR, aldehyde reductases; BsuSfp, phosphopantetheinyl transferase; CAR, carboxylic acid reductase; CvFAP, fatty acid photodecarboxylase; 
DGAT, acyl-CoA-diacylglycerol acyltransferase; FAD, fatty aldehyde decarbonylase; FAR/TaFAR, fatty acyl-CoA reductases; HFD1, aldehyde dehydrogenase; 
PDC, pyruvate decarboxylase; SAAT, alcohol acyltransferase; WS, wax ester synthase; αDOX, α-dioxygenase
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exogenous ethanol, resulted in a FAEE production level 
of 1.18 g/L [51]. Similarly, by overexpressing WS2, PDC, 
and alcohol dehydrogenase II (ADHB) while inhibiting 
key competitive metabolic pathways, such as TAG syn-
thesis (ΔGPD1, ΔSCT1, ΔDGA1), β-oxidation (ΔPEX10, 
ΔMFE1), and the TCA cycle (ΔIDH1), there was a sub-
stantial increase in the fatty acyl-CoA pool in Y. lipo-
lytica. This approach was further supported by adding 
vegetable cooking oil, successfully producing 82  mg/L 
of FAEE [54]. In S. cerevisiae, enhancing the pool toward 
FFA by deactivating fatty acid utilization pathways, such 
as triacylglycerol synthesis (ΔDGA1, ΔLRO1), sterol ester 
synthesis (ΔARE1, ΔARE2), and beta-oxidation (ΔPOX1), 
coupled with the overexpression of WS2, achieved a 
titer of 17.2  mg/L FAEE [57]. Simultaneously, eliminat-
ing the above competitive pathways while overexpress-
ing ALD6, ADH2, and ACS increased the acetyl-CoA and 
the cofactor NADPH. This strategy was further comple-
mented by upregulating ACC1 and acyl-CoA binding 
protein (ACB1), boosting the acyl-CoA pool, resulting in 
4.4 mg/L FAEE through the catalytic activity of WS2 [50]. 
Adopting a similar strategy to enhance both the acetyl-
CoA and acyl-CoA pools and utilizing strawberry alcohol 
acyltransferase (SAAT) to improve alcohol acyltransfer-
ase activity enabled S. cerevisiae to produce 7.53  mg/L 
of ethyl hexanoate (EH), 13.65  mg/L of ethyl octanoate 
(EO), and 13.87 mg/L of ethyl decanoate (ED) [58].

Fatty alkane (FALK)
Engineered yeast can produce FALKs through two dis-
tinct pathways (Fig. 2). The first involves the conversion 
of fatty acyl-ACP or fatty acyl-CoA into fatty aldehydes, 
which are subsequently decarbonylated to form alkanes 
(two-step). The second pathway converts FFAs or fatty 
acyl-CoA into alkanes via a photodecarboxylation pro-
cess (single-step). Specifically, in the engineered Y. lipo-
lytica-producing FFAs, FALKs were synthesized through 
a two-step enzymatic process. Initially, fatty acids were 
converted into fatty aldehydes and subsequently decar-
boxylated into alkanes by aldehyde deformylating oxy-
genase (ADO). This was achieved through the cytosolic 
expression of CAR, BsuSfp, and PmADO from Prochlo-
rococcus marinus. This approach successfully produced 
FALKs of about 23.3  mg/L [24]. In a genetically opti-
mized FFA-producing strain of S. cerevisiae, co-expres-
sion of CAR and its activator 4′-phosphopantetheinyl 
transferase (NpgA) from Aspergillus nidulans along with 
NpADO from Nostoc punctiforme, and the elimination 
of competing fatty alcohol synthesis pathways (ΔALR, 
ΔADH), resulted in only 0.82 mg/L of FALK [22]. How-
ever, the peroxisomal overexpression of CAR, NpgA, Syn-
echococcus elongates SeADO, and PEX34, coupled with 
the deletion of PEX31 and PEX32, enhanced alkane pro-
duction to 3.55 mg/L in S. cerevisiae [48]. By employing St
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the cyanobacterial fatty acyl-CoA-derived pathway, 
which utilizes a fatty acyl-ACP/CoA reductase (SeFAR) 
and aldehyde deformylating oxygenase (SeADO) from 
Synechococcus elongatus, alkane/alkene production in S. 
cerevisiae reached 22 µg/g DCW and 1.54 mg/L [59, 60].

A single-step process has also been employed to pro-
duce alkane/alkene directly from fatty acids. In Y. lipo-
lytica, utilizing the fatty acid photodecarboxylase from 
Chlorella variabilis (CvFAP) enabled the light-dependent 
synthesis of FALKs from either FFAs or fatty acyl-CoA. 
With this approach, 58.7  mg/L of FALKs was achieved 
directly from FFAs [61]. Li et al. (2020) further identified 
that fatty acyl-CoAs are more efficient substrates than 
FFAs for CvFAP in the photodecarboxylation reaction, 
leading to a substantial increase in FALKs production 
(1.47 g/L) directly from fatty acyl-CoA [62].

Utilizing non-conventional carbon sources for lipid 
production
CO2 and its derivatives, including formate, acetate, and 
methanol, serve as sustainable feedstocks for the pro-
duction of FFAs in yeast. Specifically, acetate can be 
converted into acetyl-CoA, while formate acts as an 
energy source by formate dehydrogenase (FDH), gen-
erating NAD(P)H [63, 64]. Utilizing formate for energy 
and acetate for carbon sources, combined with the over-
expression of FDH and ACS, resulted in the production 
of 6.6  g/L of FFAs in S. cerevisiae [31]. Another study 
demonstrated that overexpressing FDH along with key 
enzymes from the Calvin-Benson-Bassham pathway, 
specifically phosphoribulokinase (PRK) and ribulose 
bisphosphate carboxylase oxygenase (RuBisCO), and 
their molecular chaperones (GroES and GroEL), in S. 
cerevisiae led to the production of 10.1 g/L of FFAs. This 
increase was facilitated by the development of a CO2 fix-
ation pathway and enhanced utilization of formate [30].

With advancing technology for converting CO2 into 
methanol, the utilization of methanol in yeast has gained 
increasing attention. Methylotrophic yeasts such as 
Ogataea polymorpha and P. pastoris can metabolize 
methanol via the DAS pathway in the peroxisome. Sev-
eral studies demonstrated that methanol can potentially 
serve as an alternative carbon source for FFAs produc-
tion [15, 16, 32]. Methanol metabolism in O. polymorpha 
was significantly improved by adjusting the expressions 
of aldehyde oxidase (AOX1), dihydroxyacetone synthase 
(DAS), and dihydroxyacetone kinase (DAK) along with 
the overexpression of ribulose-phosphate 3-epimerase 
(RPE), fructose-1,6-bisphosphatase (FBP1). Additionally, 
the acetyl-CoA pool was increased via ACL overexpres-
sion. Glucose-6-phosphate dehydrogenase (ZWF1) and 
isocitrate dehydrogenase (ScIDP2) were overexpressed to 
enhance the NADPH supply. Concurrently, the putative 
lipase (LPL1) and membrane protein associated with zinc 

metabolism (IZH3) were deleted to optimize cell survival 
by reinstating phospholipid metabolism, thereby enhanc-
ing resistance to methanol toxicity and streamlining met-
abolic flux towards FFA production, resulting in 15.9 g/L 
FFAs using methanol [16]. Adopting a similar methanol-
utilizing strategy in Ogataea polymorpha also achieved 
a FA production level of 3.6  g/L. For FA production, 
the malate cycle (pyruvate carboxylase PYC1↑, malate 
dehydrogenase MDH3↑, malic enzyme RtME1↑) was 
improved, and TaFAR1 and ADH5 were overexpressed, 
coupled with the deletion of HFD1 [17]. In P. pastoris, 
overexpressing MmACL from Mus musculus, along with 
DAS2 to enhance formaldehyde assimilation, phospho-
ketolase (XFPK), and phosphotransacetylase (PTA) to 
improve the acetyl-CoA supply, and further overexpres-
sion of ScIDP2, resulted in the production of FFAs at a 
concentration of 23.4  g/L from methanol. A high FA 
titer of 2.0 g/L was achieved in this FFA-overproducing 
strain of P. pastoris with a methanol consumption rate of 
1.2 g/L/h, through the simultaneous restoration of FAA1 
and FAA2 to reactivate FAA along with the expression of 
FAR and deletion of HFD1 [15].

Challenges and perspectives
The biological production of industrial chemicals and 
fuels continues to attract ongoing interest due to its 
potential for environmental sustainability. Particularly in 
industrial production, the stability of bioprocesses must 
be ensured [65]. Research utilizing oleaginous yeast Y. 
lipolytica, a Generally Recognized as Safe (GRAS), has 
been extensive due to its robust lipid accumulation, typi-
cally in the form of triacylglycerols (TAG). However, for 
direct industrial use, TAG must be converted back into 
fatty acids, a process that incurs additional energy and 
costs. Consequently, recent focus has shifted towards 
directly producing FFAs from organisms [66, 67]. 
Although various studies explored yeast-based produc-
tion of fatty acids and their derivatives, the titer remains 
low for industrial applications (Tables 1 and 2). In Y. lipo-
lytica, the intense flux toward TAG production should be 
redirected to enhance FFA [68]. In S. cerevisiae, a major 
barrier is redirecting its strong ethanol production flux 
towards FFA production [69]. Furthermore, the toxicity 
of FFAs within cells can make high-level production chal-
lenging. Thus, in addition to metabolic engineering, the 
optimization of a bioprocess is required to elevate fatty 
acid production to industrial levels [66, 70].

Typically, obtaining biomass in bioprocesses is based 
on lignocellulosic glucose. Most studies reviewed in this 
study also mainly utilize glucose for lipid production. 
However, for bioproducts such as biofuels that require 
mass industrial production, the volatility of sugar prices 
poses significant economic challenges [71, 72]. As high-
lighted in this review, research is increasingly exploring 
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non-conventional carbon sources such as CO2, metha-
nol, and acetate, which do not rely on conventional sug-
ars (Fig.  1). Recent advancements include studies on 
converting methylotrophic yeasts such as P. pastoris to 
autotrophic yeasts. The CO2 conversion was achieved by 
introducing a CO2-fixation pathway into the peroxisomes 
employing the heterologous Calvin-Benson-Bassham 
(CBB) cycle [73]. The engineered autotrophic P. pastoris 
strain was also employed to produce organic acid from 
CO2 [74]. In addition, Mitic et al. (2023) successfully con-
structed an oxygen-tolerant reductive glycine pathway 
for CO2 utilization [75]. The assimilation of low-carbon 
compounds such as CO2, methanol, and acetate also 
required NAD(P)H. However, as NADH is also competi-
tively utilized for lipid synthesis, careful consideration of 
energy supply dynamics is required [14].

Additionally, the potential applications of fatty acids 
and their derivatives are intrinsically influenced by fac-
tors such as chain length, structural type, and the degree 
and distribution of saturation or unsaturation [76, 77]. 
While most studies on yeast-based lipid production have 
primarily focused on increasing overall lipid production 
and analyzing fatty acid compositions (Tables  1 and 2), 
efforts to engineer and regulate specific fatty acid pro-
files remain limited. Optimizing microbial platforms for 
the synthesis of FFAs and their derivatives necessitates a 
deeper focus on tailoring chain length to enhance their 
functionality and suitability for downstream applications.

Conclusion
The biological production of FFAs and their derivatives, 
such as fatty alcohols and alkanes, is essential for sustain-
able industrial processes. Metabolic engineering of yeasts 
has already achieved notable successes in producing 
FFAs, highlighting the importance of tailored metabolic 
engineering strategies for each yeast strain. Additionally, 
the utilization of low-carbon compounds such as CO2 
and methanol is increasingly vital for sustainable indus-
trial production. Therefore, refining metabolic pathways 
to convert these compounds into FFAs is crucial. Ongo-
ing advancements in synthetic biology, omics analysis, 
and systems metabolic engineering will enable sustain-
able and large-scale industrial production of FFAs and 
their derivatives.
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GapN	� Glyceraldehyde-3-phosphate dehydrogenase
GCY	� Glycerol dehydrogenase
GDH	� Glutamate dehydrogenase
GPD	� Glycerol-3-phosphates
GRAS	� Generally Recognized as Safe
GUP	� Glycerol uptake protein
GUT	� Glycerol 3-phosphate dehydrogenase
HFD	� Aldehyde dehydrogenase
HTD	� β-hydroxyacyl-CoA dehydratase
KS	� β-ketoacyl-CoA synthase
KR	� β-ketoacyl-CoA reductase
IDH	� Isocitrate dehydrogenase
IDP	� Isocitrate dehydrogenase
IZH	� Membrane protein associated with zinc 

metabolism
LPL	� Putative lipase
LRO	� Diacylglycerol acyltransferase
Lip2	� Lipase
MaC16E	� Fatty acid elongase
MDH	� Malate dehydrogenase
ME	� Malic enzyme
MES	� Microbial electrosynthesis
MFE	� Multifunctional enzymes
MHY	� C2H2-type zinc finger protein
NAD	� Nicotinamide adenine dinucleotide phosphate
NpgA	� 4'-phosphopantetheinyl transferase
OA	� Oleic acid
OLE	� Δ9-fatty acid desaturase
OPI	� Phosphatidyl-N-methylethanolamine 

N-methyltransferase
3PG	� 3-phospho-glycerate
PAH/LPP/DPP/APP	� Phosphatidate phosphatases
PC	� Phosphatidylcholine
PDC	� Pyruvate decarboxylase
PDH	� Pyruvate dehydrogenase
PSD	� Phosphatidylserine decarboxylase
PEX	� Peroxisome synthetase
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PL	� Phospholipid
POX	� Peroxisomal acyl-CoA oxidase
PRK	� Phosphoribulokinase
PTA	� Phosphotransacetylase
PXA	� Peroxisomal acyl-CoA transporter
PYC	� Pyruvate carboxylase
Pyr	� Pyruvate
RA	� Ricinoleic acid
RPD	� Histone deacetylase
RPE	� Ribulose-phosphate 3-epimerase
RuBP	� Ribulose 1,5-bisphosphate
RuBisCO	� Ribulose 1,5-bisphosphate carboxylase/oxygenase
SAAT	� Alcohol acyltransferase
SCT	� Glycerol-3-phosphate O-acyltransferase 1
SE	� Sterol esters
TAG	� Triacylglycerol
TCA	� Tricarboxylic acid cycle
TE/ACOT5/RnTEII/'TesA	� Thioesterases
TER	� trans-2-enoyl-CoA reductase
TGL	� Triacylglycerol lipases
TPO	� Medium-chain fatty acids exporter
WS	� Wax ester synthase
XDH	� Xylitol dehydrogenase
XFPK	� Phosphoketolase
XKS	� Xylulose kinase
XR	� Xylose reductase
Xu5P	� Xylulose 5-phosphate
XuMP	� Xylulose monophosphate
ZWF	� Glucose-6-phosphate dehydrogenase
αDOX	� α-dioxygenase
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