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Abstract 

Antibodies characterized by high affinity and specificity, developed through high-throughput screening and rapid 
preparation, are crucial to contemporary biomedical industry. Traditional antibody preparation via the hybridoma 
strategy faces challenges like low efficiency, long manufacturing cycles, batch variability and labor intensity. Advances 
in molecular biology and gene editing technologies offer revolutionary improvements in antibody production. 
New high-throughput technologies like antibody library display, single B cell antibody technologies, and single-cell 
sequencing have significantly cut costs and boosted the efficiency of antibody development. These innovations 
accelerate commercial applications of antibodies, meeting the biopharmaceutical industry’s evolving demands. This 
review explores recent advancements in high-throughput development of antibody, highlighting their potential 
advantages over traditional methods and their promising future.
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Introduction
Initially, antibodies were produced by stimulating ani-
mal immune systems with target antigens, which suffered 
from limitations such as inconsistent specificity and sig-
nificant batch-to-batch variability [1]. Hybridoma tech-
nology addresses these challenges by fusing host spleen 

cells with myeloma cells to create hybridoma cells. which 
can continuously proliferate and produce large amounts 
of specific, high-affinity monoclonal antibodies in  vitro. 
Monoclonal antibodies (mAb) are highly stable, repro-
ducible, and specific, making them valuable for research, 
drug development, and diagnostics [2]. However, this 
technology is limited by low-throughput mAb produc-
tion due to the complex and labor-intensive hybridoma 
cell fusion process, along with time-consuming screening 
and dilution steps [3, 4].

High-throughput mAb production technologies uti-
lize advanced biotechnologies, including high-through-
put screening, single-cell sequencing, and antibody 
library display, among others, to quickly obtain cod-
ing sequences for target antibody variable regions [5, 
6]. Furthermore, these technologies enable the precise 
optimization, modification, and expression of antibod-
ies through genetic engineering techniques. Through 
these methods, high-affinity and highly specific anti-
bodies can be rapidly and massively produced [7]. With 
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the deepening of biomedical research and clinical appli-
cations, high-throughput mAb production technolo-
gies are expected to become the mainstream method 
for antibody development, bringing further break-
throughs and progress in the fields of disease diagno-
sis, treatment, and drug discovery [8, 9]. This review 
summarizes recent advancements in high-throughput 
monoclonal antibody screening, highlighting their 
advantages over traditional methods and discussing 
future applications in antibody production.

Antibody library display technology
Due to somatic DNA recombination, the mammalian 
B-cell antibody repertoire can generate a diversity of 
 1012 to  1018 unique antibodies to recognize and combat 
a wide range of microbial pathogens [10]. The antibody 
library display technology presents antibody fragments 
from all variable regions of the antibody repertoire on 
the surfaces of vectors (such as phages, cells, or ribo-
somes, etc.), enabling the generation of an antibody 
library. Through multiple rounds of specific selection 
and screening parameter optimization, it facilitates the 
rapid and efficient production of antibodies targeting 
specific antigen conformations or epitopes [11, 12]. The 
high-throughput screening process for antibody library 
display technology is shown in Fig. 1

Phage display antibody library technology
Phage display antibody library technology is one of the 
most widely used methods for antibody development. 
Clackson et  al. first demonstrated that the variable 
regions of antibodies could be displayed on the phage 
surface [13]. Additionally, Barbas III and Lerner enabled 
the construction of large combinatorial antibody libraries 
by fusing antibody gene fragments to phage coat proteins, 
allowing antibodies to be displayed on the phage surface 
[14]. By incubating the phage library with antigens and 
performing panning, phages with specific binding affini-
ties are selected. Finally, high-affinity antibody genes are 
obtained through positive phage clone identification and 
DNA sequencing, providing a basis for further genetic 
engineering and antibody expression [15, 16].

Initially, antigen presentation and selection were car-
ried out using solid-phase carriers such as ELISA plates 
and magnetic beads. With the development of technol-
ogy, the introduction of automated microplate-based 
screening, magnetic bead processors, and robotic work-
stations has optimized the workflow and enhanced 
throughput [17–19]. Additionally, array-based formats 
further improve screening efficiency [20]. For instance, 
Pérez-Gamarra et  al. reported an in-well array assay 
for multiparametric screening of phage display anti-
body libraries [21]. Fluorescence-activated cell sorting 
(FACS) and microfluidics integrated with phage display 
antibody libraries have further enhanced automation 

Fig. 1 The high-throughput antibody production scheme of the antibody library display technology. Antibody libraries from immunized animals 
and humans are displayed on a variety of vectors (e.g. phage, yeast, ribosomes, etc.) to construct diverse antibody libraries, and high-affinity binding 
vectors are isolated through multiple rounds of iterative screening. The gene sequences of the variable regions of the antibodies were determined 
by ELISA identification and sequencing analysis. The gene sequences of the variable regions are integrated into the designated expression vectors 
for antibody production, followed by downstream characterization and analysis
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and high-throughput screening [22, 23]. Hemadou et al. 
employed multiplex flow cytometry for high-throughput 
screening of scFvs with precise binding specificity, reduc-
ing the number of screening rounds and simultaneously 
obtaining a broader diversity of clones [24]. Philpott et al. 
designed the μCellect platform, which utilizes microflu-
idic selection to identify picomolar-affinity antibodies 
within just two rounds of screening [25]. Additionally, 
studies have reported that combining phage antibody 
display with FACS-based yeast surface display not only 
enables the generation and screening of large libraries 
but also allows for flexible quantification and efficient 
enrichment of antibodies with specific binding proper-
ties [26, 27]. To reduce multiple rounds of screening and 
improve efficiency. Keyser et al. employed biosensors to 
present antigens to nanobody-displaying phages within 
wells, leveraging an automated Octet bio-layer interfer-
ometry sensor for high-throughput selection with precise 
control over each step [28]. Hornsby described an opti-
mized automated phage display pipeline that generated 
approximately 3,000 sequenced antigen-binding domains 
with high affinity, significantly increasing the throughput 
of antibody discovery [29].

To enhance parallel analysis capacity and increase 
screening diversity and precision, next-generation 
sequencing (NGS) has been integrated into phage display 
selection. Lee et  al. constructed a single-domain anti-
body (sdAb) phage display library and employed NGS for 
high-throughput analysis, validating library diversity and 
identifying multiple high-affinity sdAbs [30]. Sasso et al. 
co-incubated phages with activated lymphocytes to select 
clones binding to CD27, BTLA, and TIGIT, followed by 
NGS-based VH region sequencing, enabling large-scale 
parallel screening [31]. Nakada-Masuta et  al. integrated 
selection pressure with NGS analysis to effectively reduce 
expression bias and maintain antibody library diversity 
[32]. Furthermore, Barreto et  al. developed an NGS-
assisted antibody discovery platform, demonstrating that 
rare clones identified by NGS exhibited superior affin-
ity and specificity compared to high-abundance clones 
detected by Sanger sequencing [33]. These advance-
ments have significantly enhanced the efficiency of phage 
display selection, driving its widespread application in 
antibody development for cancer, viral infections, and 
autoimmune diseases [34–38].

Cell display antibody library technology
Cell display antibody library technology utilizes engi-
neered cell surface display systems to present antibody 
fragments, providing an alternative to phage display. 
The major cell display platforms include yeast display, 

bacterial cell display, and mammalian cell display, each 
offering distinct advantages in terms of expression effi-
ciency and screening capabilities [39].

Yeast display antibody library technology
Yeast display antibody library technology is a well-estab-
lished method for displaying antibody fragments on the 
yeast cell surface and constructing antibody libraries. It 
typically employs high-throughput screening methods, 
such as FACS or microfluidics, to isolate high-affin-
ity antibody clones for further analysis or subsequent 
applications [40, 41]. After multiple rounds of screen-
ing and amplification, high-affinity antibody clones can 
be obtained. The automation of high-affinity antibody 
characterization, sequencing, and expression, along with 
engineering advancements, has significantly accelerated 
the antibody production process [42]. Yeast’s eukaryotic 
nature provides an ideal environment for antibody dis-
play, facilitating proper folding and post-translational 
modifications like glycosylation, which enhances the 
solubility and expression of disulfide-bonded and natively 
glycosylated antibodies or antibody fragments [43, 44]. 
Bowley et al. directly compared the same HIV-1 immune 
scFv cDNA library expressed in both phage and yeast 
display vectors, finding that yeast display yielded three 
times more specific scFv clones than phage display, and 
included all the clones recovered via phage [45]. This 
result demonstrates that yeast display can capture a 
broader and more functional diversity of antibodies. In 
addition, this technology based on cell surface antibody 
library display (including the mammalian cell surface dis-
play antibody library discussed below) integrates high-
throughput screening and analysis methods, allowing for 
the high-throughput screening and characterization of 
tens of thousands of candidates [46]. This capability offers 
significant benefits in affinity, discovery of rare antibody 
clones, and improved cost-effectiveness and efficiency. 
Holliger et  al. recently utilized the Illumina HiSeq plat-
form to sequence yeast antibody libraries, which greatly 
accelerated the identification of high-affinity candidate 
sequences, screening for 108 antibody-antigen interac-
tions within 3 days [47]. It is important to note, however, 
that while the identification process using NGS data can 
be accomplished quickly, the subsequent steps (e.g., gene 
synthesis, cloning, expression, and functional validation) 
are still time- and resource-intensive. The entire process 
of physically synthesizing and validating high-affinity 
antibodies typically takes several weeks, and cloning for 
synthesis and expression is costly [48]. This is largely due 
to the lack of cost-effective, high-throughput gene syn-
thesis and expression solutions, which limits the scalabil-
ity of the antibody discovery pipeline.



Page 4 of 18Wang et al. Journal of Biological Engineering           (2025) 19:41 

Mammalian cell display antibody library technology
Mammalian cell display antibody library technol-
ogy involves inserting the target antibody gene into 
an expression vector and introducing it into mamma-
lian cells (like CHO or HEK293) via transfection or 
viral infection. This allows the surface expression of the 
exogenous proteins, creating display libraries [49]. The 
high-throughput antibody screening of mammalian cell 
display following library construction are similar to yeast 
display. The mammalian cell display technology, owing 
to its endogenous eukaryotic secretion mechanism, par-
tially mitigates the issues of low effective activity and 
misfolding that arise from the absence of post-transla-
tional modifications inherent in phage display. Theoreti-
cally, complex and highly stable antibodies (including 
Fab, scFv, and full-length IgG antibodies) can be dis-
played directly on the cell surface using mammalian cell 
surface display systems [50]. Robertson et  al. developed 
an antibody discovery platform based on mammalian cell 
display technology for the natural conformation of mem-
brane proteins, thereby increasing the opportunities to 
obtain high-affinity antibodies [51]. Furthermore, mam-
malian cell antibody display libraries can be designed in 
a secreted antibody format to enhance the efficiency of 
antibody screening. The secreted antibody repertoire has 
been integrated with various high-throughput auxiliary 
screening techniques, including gel microdroplet-fluores-
cence-activated cell sorting, droplet microfluidics, nano-
pores, and microarrays, among others [52]. Recently, 
Doerner et al. created a display-secretion switch system 
for pre-enriching highly manufacturable antibodies and 
conducting functional screening [53]. In the aforemen-
tioned context, antibody therapeutics utilizing mamma-
lian cell display technology have undergone significant 
development in recent years [54–56]. However, it should 
be noted that conventional mammalian cell display anti-
body libraries struggle to meet all expectations of an 
ideal library. Researchers may need to employ targeted 
strategies to enhance library quality, thereby increasing 
the likelihood of identifying ideal antibodies during the 
screening process. For instance, enhancing the library’s 
capacity by utilizing immunized animals, and achieving 
stable integration and transcriptional normalization of 
library mutations through programmable nucleases such 
as CRISPR/Cas9 and TALENs [57, 58]. Furthermore, this 
technology involves cell transfection and transmembrane 
secretion during library construction, which still requires 
further optimization to enhance the overall efficiency of 
antibody development.

Bacterial cell display antibody library technology
Bacterial cell display antibody library technology pro-
vides a simple and rapid alternative for the efficient 

transformation and functional screening of large pep-
tide libraries. However, in bacterial display systems, 
proteins must traverse two membranes or contend with 
a thick peptidoglycan cell wall, which poses significant 
challenges for the display of large proteins or antibod-
ies [59]. Although Francisco and Lee et al. demonstrated 
that scFv fragments can be functionally displayed on the 
surface of E. coli and sorted using flow cytometry, the 
outer membrane remains a barrier [60, 61]. As a result, 
only a few bacterial display systems can effectively pre-
sent antibody fragments, limiting yield and complicat-
ing large-scale production. Mazor and Lombana et  al. 
innovatively described a bacterial cell antibody library 
method in which IgG antibodies were immobilized on 
the periplasm-facing inner membrane. Using FACS, they 
successfully selected specific antigen binders, obtaining a 
diverse set of high-affinity IgG clones within 3–4 weeks 
[62, 63]. The dominant screening method for bacterial 
cell display antibody libraries is FACS, as it enables the 
assessment of expression levels, antigen binding, and 
estimation of antibody affinity [64]. While FACS excels 
in throughput and high-affinity binder isolation, it pre-
sents technical challenges when screening highly diverse 
libraries. To address this, researchers have integrated 
phage display as a preselection step to reduce library size, 
allowing subsequent rounds of FACS screening in E. coli. 
This approach facilitates the selection of a highly diverse 
repertoire of binders while enabling real-time monitor-
ing and optimization of the screening process [65, 66]. In 
addition to the high-throughput FACS screening method, 
MACS is also widely used for bacterial cell display anti-
body libraries due to its faster library processing speed 
and the absence of expensive laboratory equipment [67, 
68]. Furthermore, by incubating the bacterial antibody 
library with cells expressing the target antigen, bacte-
ria can adhere to the target cells, enabling specific clone 
selection based on target cell binding [69]. This live-cell 
screening is particularly suitable for the development of 
nanobodies targeting tumor surfaces [70]. Overall, bac-
terial cell display antibody libraries are emerging as an 
efficient, cost-effective, and scalable antibody screening 
platform, overcoming technical bottlenecks and expand-
ing into broader applications.

Ribosome display antibody library technology
Ribosome display technology enables the screening and 
identification of functional proteins by forming"protein-
ribosome-mRNA"(PRM) ternary complexes in  vitro, 
which links newly synthesized proteins to their cor-
responding mRNA molecules [71]. Ribosome display 
Antibody libraries are typically screened using antigen-
functionalized magnetic beads. After the screening pro-
cess, the eluted mRNA undergoes RT-PCR to synthesize 
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cDNA, which could serve as the template for subsequent 
antibody expression [72].

Library display technology, with its advantages in high-
throughput screening and the rapid generation of high-
affinity antibodies, has greatly advanced the development 
of therapeutic antibodies. However, display techniques 
that present antibody fragments on the surface of liv-
ing cells or viruses face the challenge of low efficiency 
in transfecting large DNA libraries [73]. Ribosome dis-
play libraries overcome these limitations by constructing 
the library in a cell-free system and introducing meth-
ods such as error-prone PCR and DNA recombination. 
This approach significantly enhances molecular genetic 
diversity and facilitates the affinity maturation and evo-
lution of antibodies in vitro [74]. Despite its advantages, 
the effective function of ribosome display technology is 
heavily reliant on the integrity of the PRM complex. One 
significant challenge is the susceptibility of mRNA within 
the PRM complex to degradation in vitro, which can lead 
to decreased stability of the complexes, thereby affecting 
antibody selection efficiency, since incomplete or unsta-
ble complexes may not be effectively selected [75]. To 
address this issue, Ohashi et al. invented the PURE sys-
tem for protein synthesis in vitro. This optimized system, 
which contains fewer nucleases and proteases, improves 
mRNA recovery and produces more stable ternary com-
plexes [76]. Additionally, Wagner et al. developed the Pol-
yMap high-throughput platform, which combines bulk 
binding of ribosome display libraries with scRNA-seq for 

pairwise mapping of protein–protein interactions, char-
acterizing unique antibody clones without the need for 
mRNA recovery, thereby improving the efficiency of anti-
body development [77]. However, ribosome display tech-
nology is considered less optimal compared to cell- or 
phage-based antibody library display technologies due to 
reduced fidelity in cell-free reactions. For instance, cell-
based display technologies leverage the natural mecha-
nisms of living cells, offering higher expression efficiency 
and more reliable screening outcomes. In contrast, ribo-
some display often faces challenges related to stability 
and fidelity in  vitro, which can negatively impact anti-
body selection and optimization processes [78, 79].

Single B cell antibody technology
Mammalian B-lymphocyte are extremely diverse and can 
produce as many as  1012 antibody clonotypes [80]. Unlike 
traditional antibody display technologies (e.g. phage dis-
play), which rely on iterative screening within a vast anti-
body library, single B-cell antibody technology allows for 
the direct isolation of individual antigen-specific B cells 
from animal tissues or peripheral blood [81]. The specific 
process of this technology(outlined in Fig.  2) includes 
antigen-specific B cell isolation, antibody gene ampli-
fication, and the expression and purification of recom-
binant antibodies. Compared with traditional antibody 
production techniques, single B cell antibody produc-
tion technology offers the advantage of rapidly obtaining 
naturally paired light and heavy chain variable regions 

Fig. 2 The high-throughput antibody production scheme of the single B cell antibody technology. In the context of isolating PBMCs or splenocytes 
from immunized animals, as well as PBMCs from convalescent patients, various techniques such as MACS can be employed to enhance 
the concentration of target B cells. Subsequently, antigen-specific single B cells be isolated using methods such as FACS and microfluidics. The 
antibody variable region genes can be cloned through RT-PCR to facilitate antibody expression and subsequent analysis
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through high-throughput screening of antigen-specific B 
cells from animals or humans [82]. With the progression 
of technology, downstream expression methodologies 
in single B-cell antibody technology, including the utili-
zation of expression plasmids such as the pFUSE series, 
as well as various engineered cell lines like CHO-K1 and 
HEK293, have become well-established [83–85]. In addi-
tion, matured nested PCR enables high-fidelity amplifica-
tion of antibody variable region genes, thereby serving as 
a crucial tool for the generation of single-cell antibodies 
[86, 87]. However, the cell sorting method plays a crucial 
role in isolating individual B cells with high antigen affin-
ity and specificity from heterogeneous cell populations, 
which significantly influences the specificity and affinity 
of the antibodies produced. In this section, we provide 
a comprehensive review of various single B-cell sorting 
techniques and their applications in antibody production.

Single B‑cell antibody preparation based on fluorescence 
activated cell sorting
FACS is a widely recognized and highly efficient tech-
nique that employs a flow cytometer for the multipara-
metric detection and classification of cells. This method 
enables selective separation of target B cells through the 
establishment of screening"gates."The sorting princi-
ple is as follows. Initially, fluorescently labeled antigens 
and antibodies targeting various cell surface markers 
are utilized to immunolabel the antigen-specific B cells 
in the single-cell suspension. Then, the labeled cellular 
samples are introduced into a flow chamber operating 
under high-pressure conditions, wherein the sheath fluid 
arranges the cells into a single row. The cells then traverse 
a fluorescence detection channel, where they are exposed 
to ultrahigh-frequency vibrations to generate single-cell 
droplets. These droplets are subsequently sorted into 
individual cells utilizing an electrostatic deflection sys-
tem [88]. The individual cells are then isolated into dis-
tinct wells of cell culture plates. Following cell lysis for 
RNA extraction, cDNA synthesis and amplification of 
antibody variable region genes can be performed. In fact, 
FACS technology is capable of screening individual cells 
at rates of up to 10,000 cells per second and can precisely 
isolate specific B cells [89]. The principal advantage of 
FACS technology in single B-cell antibody preparation 
is its ability to swiftly and accurately identify individual 
antigen-specific B cells through multicolor fluorescence. 
This capability has significantly facilitated the develop-
ment of a wide array of antibodies in research. Carbon-
etti et  al. rapidly and efficiently isolated, cloned, and 
produced monoclonal antibodies from immunized mice, 
which was achieved through the utilization of multichan-
nel screening techniques employing markers such as 
B220-PacBlue, CD38-APC, and IgM-FITC, among others 

[90]. Additionally, Fan et  al. employed multicolor FACS 
to generate humanized monoclonal antibodies targeting 
seven distinct subtypes of BoNT/F, resulting in antibod-
ies that could neutralize multiple antigenic variants [91]. 
This approach exemplifies how FACS technology can 
streamline the production of highly specific and versatile 
monoclonal antibodies.

Nonetheless, the low sensitivity and high detection 
noise of FACS often lead to challenges associated with 
false positives (FP) and false negatives (FN), which in 
turn increase the workload of subsequent antibody char-
acterization and validation processes [92]. To improve 
the specificity of sorting individual B cell, the integra-
tion of MACS with FACS is increasingly employed. Zhou 
et al. utilized magnetic beads to selectively enrich specific 
B cell populations before dual fluorescent dye sorting, 
which markedly diminished the interference from other 
cell types within the sample [93]. This antibody develop-
ment strategy not only improves sorting specificity but 
also reduces the subsequent workload associated with 
antibody expression and characterization. Moreover, to 
further reduce the impact of FN and FP, it is crucial to 
enhance the identification of positive clones through sin-
gle B cell culture and the analysis of culture supernatants 
[94]. Moreover, antibody-secreting cells (ASCs) not only 
exhibit higher antibody affinity compared to memory B 
cells but are also present in significantly larger quanti-
ties in  vivo [95]. However, their low expression of sur-
face markers poses substantial challenges for isolation 
and identification using FACS, as this method heavily 
relies on marker expression for cell sorting. These tech-
nical difficulties have greatly hindered the widespread 
application of FACS in studying ASCs [96]. Although the 
hetero-functional particles developed by Ramirez et  al. 
integrated with the FACS platform enable high-through-
put isolation of specific ASCs and significantly enhance 
the enrichment efficiency of antibody-associated cells, 
this method is relatively complex to design and requires 
skilled operation to fully optimize the platform’s capa-
bilities [97]. Moreover, the application of FACS screening 
may be limited by unclear or absent cell surface markers, 
which can lead to the loss of ideal antibody clones. For 
instance, rabbit-derived lymphocytes are currently con-
strained by the lack of useful surface markers on their cell 
membranes for effective screening. While Starkie et  al. 
introduced a two-color antigen staining method for the 
recognition of antigen-specific rabbit memory B cells. the 
intricate design of the screening process led to challenges 
in ensuring the specificity of the identified positive cells, 
necessitating extensive downstream validation efforts, 
including a substantial amount of antibody cloning and 
validation work in subsequent stages [98]. In addition, 
FACS often requires a large starting number of cells for 
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the screening of antigen-specific B cells, and manipula-
tions in the pre-treatment may affect cell viability, result-
ing in difficulties in the identification of downstream 
antibody affinity and antibody activity.

Microfluidic sorting‑based single B‑cell antibody 
preparation technology
To address the limitations of traditional FACS meth-
ods in sorting single B cells for antibody development, 
microfluidics-based sorting technologies offer significant 
advancements in both efficiency and precision. Micro-
fluidics technology is categorized into microdroplet and 
microwell systems according to their operational princi-
ples [99]. These microfluidic platforms enable the detec-
tion and isolation of specific B cells at the single-cell level 
and support the cultivation of positive clones within a 
controlled nutrient environment [100]. Compared to 
traditional antibody production methods, microfluidics-
based single-cell antibody production technologies offer 
superior cell sorting precision, throughput, and integra-
tion capabilities. These advantages make microfluidics a 
key tool for large-scale antibody screening and optimiza-
tion, underscoring its potential to advance the fields.

Based on droplet‑based microfluidics
Microdroplet microfluidics utilizes an aqueous phase 
containing cells and analytical reagents, in conjunction 
with an oil phase that isolates individual cell droplets. 
Within the flow channel, these droplets are swiftly ana-
lyzed and identified using a high-frequency laser, while 
an electric field classifies them based on their unique 
characteristics [101]. A notable advantage of this tech-
nique for antibody screening is that each droplet not 
only functions as an independent microreactor but also 
has an extremely small volume (in the picoliter range), 
effectively preventing cross-contamination between 
droplets and ensuring that the cells and reagents within 
each droplet can undergo efficient and precise reactions 
in a confined environment [102]. Additionally, precise 
manipulation of droplets through merging, splitting, and 
sorting enables high-throughput separation and recovery 
of cells. This technique allows for the generation of drop-
lets in the order of  107 per experiment, processing thou-
sands per second. Consequently, it significantly reduces 
the screening cycle from months to a single day, greatly 
enhancing assay efficiency [103].

Microfluidic platforms, celebrated for their efficient 
sorting capabilities, have significantly propelled the 
advancement of antibody development. In the realm of 
scientific research, Eyer et  al. have elucidated a drop-
let-based microfluidic technique known as DropMap. 
This technique facilitates massively parallel kinetic 
analysis of individual ASCs by integrating immobilized 

picoliter-sized droplets with highly sensitive assays. 
DropMap enables precise assessment of antibody secre-
tion rates, specificity, and affinity for antigens, thereby 
enhancing the capabilities of antibody evaluation and 
characterization [104]. For commercial applications, the 
Cyto-Mine® platform developed by Sphere Fluidics Co., 
Ltd. offers a significant advantage in antibody screen-
ing. This system utilizes fluorophore-labeled donor and 
acceptor probes to enable fluorescence resonance energy 
transfer (FRET) for the detection of cellular secretions. 
Antibodies secreted by cells within droplets are captured 
by these probes; one fluorophore is excited by a laser, 
transferring energy to the second fluorophore. This tech-
nique provides precise quantification of target antibodies 
and facilitates the efficient production of recombinant 
homologous paired antibody candidates for secondary 
screening [105]. According to Doerner et  al., the Cyto-
Mine® platform provides several key advantages: 1) It 
enables the rapid identification of antigen-specific posi-
tive cells through FRET technology, with direct applica-
bility to full IgG formats. 2) It can efficiently analyze up 
to one million single antibody-secreting cells, achieving a 
screening rate of 250 drops per second. 3) The microdro-
plet technology minimizes mechanical damage to cells, 
thereby maintaining cell viability for subsequent antibody 
performance evaluations. 4) The entire process, from cell 
preparation to recombinant antibody confirmation, is 
completed within a four-week timeframe [106]. Similarly, 
Brenan et  al. introduced the Celli GO technique, which 
combines fluorescence-based single-cell bioanalysis with 
single-cell barcoding in droplets to visualize specific 
ASCs. This technique allows sorting of droplets at veloci-
ties up to 600 per second, resulting in the generation of 
77 recombinant antibodies from identified sequences 
[107]. The MTX-COVAB antibody drug developed by 
Hillenbrand et  al. DROPZYLLA® platform has demon-
strated significant efficacy in  vivo, further highlighting 
the impact of microdroplet microfluidic technologies in 
antibody development [108]. Additionally, Adler et  al. 
introduced an emulsion droplet microfluidic approach 
that enables the isolation of millions of single B cells 
while preserving the natural pairing of heavy and light 
chains, facilitating the affinity screening of rare antibod-
ies from murine libraries [109]. Furthermore, DeKosky 
et  al. developed a single-cell, emulsion-based microflu-
idic technology capable of generating VH-VL amplicons 
for NGS [110]. These advancements further expand the 
applications of droplet microfluidics in antibody discov-
ery and lay the foundation for single-cell immune reper-
toire sequencing.

Recent advancements in microdroplet microflu-
idic platforms have significantly enhanced the capa-
bilities for antibody development, yet several critical 
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challenges remain. Key issues include the need for 
greater simplification of technology and the integration 
of automated systems. Addressing these challenges is 
crucial for the continued progress of droplet microflu-
idic antibody discovery platforms. In this context, Wip-
pold et al. have introduced a rapid assessment platform 
that leverages integrated microfluidic technology to 
enable high-throughput, single-cell resolution identi-
fication of neutralizing antibody libraries in response 
to viral infections [111]. Wang et  al. have developed a 
sophisticated signal capture system that addresses cell 
viability issues arising from iterative enrichment pro-
cesses and overcomes some limitations associated with 
existing commercial plasma cell enrichment reagents 
[112]. In a related development, Wang et  al. have suc-
cessfully combined an autocrine-based lentiviral trans-
duction system with microfluidic droplet technology, 
enhancing both efficiency and capacity. This innovation 
facilitates the screening of low-frequency functional 
antibodies and the characterization of bispecific anti-
bodies [113]. Mazutis et al. have employed FRET-based 
droplet microfluidics to screen individual antibody-
secreting cells, achieving sorting efficiencies of up to 
97.5% and an 800-fold enrichment of target cells in a 
single sorting round, thus significantly accelerating the 
antibody discovery process [114]. Additionally, Ahmadi 
et  al. have pioneered a novel method for on-demand 
co-encapsulation of cells, providing new insights into 
the automation of droplet microfluidic antibody dis-
covery techniques [115]. These advancements highlight 
the rapid progress in droplet microfluidic platforms for 
antibody discovery, showcasing their transformative 
potential in high throughput antibody research. High-
throughput microdroplet technologies can now gener-
ate and screen approximately ten million picoliter-scale 
microdroplet reaction units in a single experimental 
iteration. This unprecedented capacity not only accel-
erates throughput but also shortens development 
timelines and reduces operational costs, making these 
platforms highly attractive for large-scale antibody 
screening. However, significant challenges persist that 
must be addressed to unlock the full potential of this 
technology. A major limitation is the occurrence of 
false-negative results, often attributed to the inefficient 
encapsulation of ASCs within the defined microdrop-
let volumes. Furthermore, the intrinsic constraints of 
picoliter-sized droplets, such as limited reagent avail-
ability and dilution effects, can compromise detection 
sensitivity and accuracy. Overcoming these barriers 
will require innovations in droplet design, cell encap-
sulation efficiency, and signal amplification strate-
gies. Future advancements in these areas are essential 
for enhancing the reliability and scalability of droplet 

microfluidics, paving the way for its broader applica-
tion in antibody discovery and beyond.

Based on microwell‑based microfluidics
Antibody discovery and development have made signifi-
cant strides with the advent of microfluidic technologies. 
Single-Cell Antibody Nanopores (SCANs) represent a 
synthesis of microwell chips devices and high-through-
put screening techniques, offering a novel approach 
to isolating and analyzing individual B cells. The origi-
nal microengraving and immunospot array assay on a 
chip (ISAAC) is represents a sophisticated technique 
for SCAN applications. Among these, microengrav-
ing technology enables the precise separation and isola-
tion of individual cells in microfluidic chip chambers by 
exploiting variations in cell size, shape, or surface mark-
ers, ensuring that a single cell is present in each chamber. 
These miniature chambers are meticulously designed to 
offer an optimal cell culture environment, encompass-
ing essential nutrients, growth factors, and extracellular 
matrix components, thereby facilitating the growth and 
maturation of individual B cells. Antibodies secreted by 
individual B cells are transferred to a protein microarray 
for antigen-specific screening and are mapped to the cor-
responding target cells. Subsequently, the target cells are 
isolated from the wells through micromanipulation tech-
niques, facilitating high-throughput cell sorting [116]. 
ISAAC technique utilizes anti-IgG or specific antigens 
immobilized on the surface of a microarray. Antibodies 
secreted by the cells bind to the immobilized anti-IgG 
or specific antigens, resulting in the formation of dis-
tinct circular spots that are readily distinguishable from 
non-specific signals [117]. Using this technique, ASCs 
are identified within 3–4 days and subsequently analyzed 
through clonal expansion or RT-PCR [118].

SCANs can screen up to 100,000 polyclonal B cells 
simultaneously, thereby providing remarkable high-
throughput capacity, sensitivity, and specificity [119]. 
The use of fluorescently labeled antigens for screen-
ing and identification reduces extensive validation of 
antibody clones [120, 121]. Additionally, the multi-
nanopore design of SCANs technology enables the simul-
taneous study of specific antibodies targeting a diverse 
array of distinct antigens on a single chip. Esfandiary 
et  al. employed SCAN screening to identify high-fre-
quency cell clones producing specific IgG isotypes target-
ing anti-SSA/Ro60 and anti-SSB/La antigens, illustrating 
the capability of SCAN to isolate multiple antigen-spe-
cific B cells on a single chip [122]. Currently, research-
ers have enhanced the microwell system to improving 
the efficiency of antibody development. For instance, Li 
et  al. introduced CSMN, a nanopore-based, semi-anti-
gen-specific rabbit ASC selection method, enabling the 
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acquisition of target antibody gene sequences within 
a 5-day screening period [123]. Abali et  al. employed a 
nanopore platform for screening, enabling the generation 
of high-titer antibodies. This process, from the introduc-
tion of single cell and the measurement of antibody yield 
to the production of fully amplified clones, was com-
pleted within a timeframe of 4 to 6 weeks [124]. However, 
this technique necessitates intricate and precise experi-
mental procedures, including the extraction of cells from 
microwells and the application of antibody coatings on 
the chip surface. Furthermore, the design and fabrication 
of these chips involve substantial costs. As a result, the 
technology platform has limited applicability. Another 
important consideration is the high cell density within 
the miniature device, which may result in cross-contam-
ination between cells and subsequently impact the accu-
racy of the experimental outcomes.

In contrast to SCANs, the commercial Beacon® sin-
gle B-cell screening platform exhibits superior automa-
tion capabilities. Introduced in 2016 by Berkeley Lights, 
Co., Ltd., the Beacon® platform offers fully automated 
and high-throughput functionality, establishing itself as 
a pivotal tool for high-throughput antibody screening 
[125]. This platform integrates advanced opto-electro-
positioning (OEP) technology, nanoscale microreactor 
systems, and innovative microfluidic design. This com-
bination enables precise single B-cell sorting, nanoscale 
single B-cell culture, and validation of positive clonal 
antibody secretion—all within a compact, centimeter-
scale chip [126]. The experimental procedure for this 
technology platform consists of four sequential stages. 
In the first stage, 10,000 to 20,000 B cells are introduced 
onto the Beacon® chip via microfluidics. Next, using 
OEP technology, individual B cells are isolated and trans-
ferred to NanoPen™ culture chambers for cultivation. 
Each NanoPen™ chamber can only accommodate one 
cell, ensuring a monoclonality rate of 99% or higher while 
maintaining high cell viability. In the third stage, the plat-
form performs real-time detection of antibody binding 
strength, specificity, and affinity within the NanoPen™ 
chambers to identify effective clones. Finally, specific B 
cells are selected based on culture and real-time analysis 
results, extracted using OEP technology, and recovered 
into multi-well plates for further expansion [127].

The Beacon® single B cell OEP platform enables full 
automation of the entire single-cell experimental work-
flow. Winters et  al. employed this platform to generate 
antibodies targeting unique reagents [128]. Remarkably, 
the entire workflow, encompassing chip-based cell import, 
antibody screening, and data export for discovery, was 
completed in less than 5  h. Furthermore, the complete 
discovery process, encompassing immunization to recom-
binant antibody expression, can be accomplished in as 

few as 40 days. Douet et al. utilized the Beacon platform 
to generate efficient CHO clones in a reduced timeframe, 
thereby enhancing both the throughput of the Beacon® 
system and the identification of high-producing clones 
[129]. Compared to traditional single-cell antibody prep-
aration platforms, the Beacon® single B-cell screening 
platform enables automated cell sorting, cultivation, and 
positive clone identification, significantly reducing man-
ual intervention associated with traditional methods. This 
advancement not only dramatically accelerates antibody 
development but also improves stability and reproduc-
ibility. Additionally, the Beacon® single B-cell screening 
platform can simultaneously process tens of thousands 
of cells, providing exceptional scalability and significantly 
enhancing antibody development efficiency. Given these 
advantages, the platform has become a pivotal tool in 
the development and industrialization of therapeutic and 
diagnostic antibodies [130, 131].

Notably, while both microwell-based microfluidics 
and the commercial Beacon® System facilitate the culti-
vation and characterization of individual specific ASCs 
within microwell or NanoPen™ chamber, amplification 
and sequencing of variable region genes is still performed 
off-chip, this separation increases the risk of ASC loss 
and cross-contamination. To address these issues, Zhang 
et  al. introduced an innovative modular design for the 
SSMA chip, which allows for the simultaneous acquisi-
tion of paired variable region genes from a single ASC 
within a single SSMA chip, thereby reducing the risks 
of cell loss and cross-contamination [132]. Nevertheless, 
microwell-based microfluidics and commercial beacon® 
systems remain prohibitively expensive and complex for 
antibody development. Future advancements in user-
friendliness, cost efficiency, and increased throughput 
may offer substantial opportunities for the field of single 
cell antibody development.

Antibody production technology 
for high‑throughput single‑cell sequencing
The complex processes of V(D)J gene rearrangement, 
somatic hypermutation (SHM), and class switching 
generate a vast repertoire of variable region sequences 
in antibody heavy and light chains, contributing to the 
huge capacity of the B cell immune repertoire [133]. 
Generally, the antibody preparation technique based on 
high-throughput single-cell sequencing includes the fol-
lowing processes: 1) Isolation and enrichment of spe-
cific B cells from peripheral blood mononuclear cells 
(PBMCs) or splenocytes obtained from animal mod-
els. 2) In water-in-oil microdroplets, gel beads or mag-
netic beads with tagged sequences are used to capture 
single B cells, followed by the extraction of RNA from 
each cell, which is then reverse-transcribed into cDNA 
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for sequencing library construction. 3) Sequencing of 
B cells by single-cell NGS technology to obtain large-
scale single-cell resolution data. 4) Bioinformatics tools 
are used to analyze the sequencing data from individual 
B cells to obtain the paired IgG heavy and light chain 
variable region genes [134]. Figure 3 depicts the techni-
cal workflow of high-throughput antibodies preparation 
based on high-throughput single-cell sequencing. This 
technology exemplifies the synergy between state-of-
the-art sequencing techniques and advanced bioinfor-
matic methodologies. Such integration underscores the 
sophistication and depth of modern antibody repertoire 
research. By offering a comprehensive framework for 
analyzing the B cell antibody repertoire, this approach 
markedly advances the development of high-throughput 
antibody solutions.

The introduction of Cellular Indexing of Transcrip-
tomes and Epitopes by sequencing (CITE-seq) in 2017 
marked a significant breakthrough in the field of single-
cell sequencing [135]. Building on the success of CITE-
seq, Setliff et  al. proposed linking B-cell receptors to 
antigen specificity through sequencing (LIBRA-seq). The 
core of LIBRA-seq is the addition of fluorescent modifi-
cations and oligonucleotide labeling (including PCR pro-
cessing, barcode sequences, and capture sequences) onto 
antigens. By incubating B cells with different antigens and 
using FACS to sort antigen-specific B cells. Subsequently, 
microfluidic technology is employed to encapsulate 

individual B cells in droplets containing magnetic beads, 
followed by single cell RNA sequencing (scRNA-seq). 
The magnetic beads are coated with universal cell bar-
codes, which facilitate the linking of antigen-specific bar-
codes and B cell receptor (BCR) transcripts, enabling the 
identification of both the BCR sequences and their cor-
responding antigen specificity [136]. This method offers 
several advantages, including rapid, high-throughput 
antibody screening, the establishment of direct correla-
tions with antigen specificity, and the simultaneous iden-
tification of broad-spectrum neutralizing antibodies. 
These broad-spectrum antibodies are capable of recog-
nizing and neutralizing a number of different antigens or 
antigenic variants, which is particularly valuable against 
different strains of pathogens or against multiple epitopes 
of a single antigen. Kramer et  al. used LIBRA-seq tech-
nology to isolate a monoclonal antibody, 54,042–4, from 
COVID-19 convalescents that was effective in neutraliz-
ing SARS-CoV-2 viruses including multiple SARS-CoV-2 
variants [137]. Additionally, Pilewski et  al. employed 
LIBRA-seq to study the antibody repertoire of individu-
als co-infected with chronic HIV-1 and HCV, identify-
ing five antibodies with broad neutralization activity 
and potent functional effects against both HIV-1 and 
HCV [138]. Recently, substantial progress has been made 
in LIBRA-seq. Shiakolas et  al. incorporated barcode-
labeled antigenic ligands into the LIBRA-seq platform, 
thereby establishing a comprehensive three-dimensional 

Fig. 3 The high-throughput antibody production scheme of the single-cell sequencing. In the context of isolating PBMCs or splenocytes 
from immunized animals, as well as PBMCs from convalescent patients. Target B cells were enriched using MACS or FACS. Single-cell sequencing 
was conducted on the enriched cells to obtain 5’-end transcriptome data and immune repertoire data. Bioinformatics analysis was then employed 
to identify high-affinity antibody gene sequences from a vast amount of single-cell sequencing data. Specific vectors were subsequently 
incorporated for antibody expression and downstream characterization
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correlation among antibody sequences, antigens, and 
neutralization effects. This advancement has significantly 
improved the efficiency of neutralizing antibody screen-
ings [139]. Additionally, Walker et  al. employed a panel 
of antigens with point mutations to map the relationship 
between antigenic epitopes and antibody sequences. This 
approach has refined the antigenic epitopes of thousands 
of B cell receptors simultaneously, thereby elevating the 
functionality and utility of LIBRA-seq [140]. LIBRA-seq 
has now achieved remarkable success in the development 
of antibodies against a diverse array of viruses [141–143]. 
Overall, LIBRA-seq represents a powerful and innovative 
method for antibody development. However, its applica-
tion may be constrained in certain scenarios due to the 
complexity of recombinant antigen design and the dis-
continuous nature of its experimental workflow.

In contrast, the 10 × Genomics single-cell sequenc-
ing platform has shown great potential in simplifying 
experimental workflows and providing broader and more 
comprehensive antibody discovery. As a premier plat-
form for single-cell antibody library sequencing, it uti-
lizes sophisticated microfluidic technology and efficient 
molecular identification methods to support large-scale 
antibody development and optimization, thereby offer-
ing a dependable solution for high-throughput antibody 
screening [144]. The platform leverages microfluidic 
technology to encapsulate single cell, gel beads, and reac-
tion reagents within a"water-in-oil"droplet microenvi-
ronment, each tagged with molecular identifiers (UMIs) 
and cellular barcodes. Upon cell lysis within the drop-
lets, mRNA containing Poly(dA) sequences are released, 
subsequently binding and being reverse-transcribed into 
cDNA that carries both the cellular barcode and UMI. 
After oil dissolution, a portion of the resulting cDNA is 
used for the construction of a 5’transcriptome library, 
while the remainder undergoes PCR amplification for 
V(D)J gene analysis, facilitating the construction of an 
immune repertoire library [145, 146]. The 10 × Genom-
ics platform facilitates high-throughput single-cell V(D)
J sequencing, providing the capability to accurately cap-
ture and pair the complete variable region sequences of 
both light and heavy chains with high precision. This 
technology not only facilitates detailed single cell analy-
sis but also provides comprehensive expression profiling 
information. With its significant advantages, including 
high resolution and efficiency, the platform is widely used 
by researchers to develop antibodies with high affinity 
and specificity, significantly advancing the field of anti-
body discovery and development [147, 148].

Compared to other antibody development techniques, 
high-throughput single-cell sequencing offers a faster and 
more efficient solution by bypassing intermediate steps 
and directly obtaining high-quality antibody data [149]. 

However, the vast volumes of sequencing data generated 
by high-throughput single-cell sequencing technologies 
can be overwhelming. A critical challenge in identifying 
and isolating high-efficiency antibodies lies in enhancing 
the proportion of target-specific or high-value informa-
tion within these datasets. Developing efficient strate-
gies to prioritize and refine these datasets is essential for 
advancing antibody discovery. To address this challenge, 
researchers often focus on enriching target B cells spe-
cific to the antigen before sequencing. This approach 
helps reduce interference from low-affinity B cells and 
other cellular components, thereby enhancing the qual-
ity and pertinence of the data. For instance, Cao et  al. 
improved the success rates for high-efficiency neutraliz-
ing antibody screening by using magnetic bead-specific 
enrichment of patient sera followed by 10 × Genom-
ics single-cell sequencing, identifying 14 high-efficiency 
neutralizing antibodies within two weeks [150]. Simi-
larly, Wang et  al. employed FACS to isolate memory B 
cells bound to recombinant Staphylococcus aureus anti-
gen, followed by 10 × Genomics single-cell sequencing 
to identify 10 distinct IgG antibodies [151]. These stud-
ies highlight the effectiveness of pre-sequencing enrich-
ment strategies in reducing non-informative noise from 
low-affinity B cells and other contaminants. By selectively 
enriching target cells prior to sequencing, this approach 
significantly enhances the likelihood of identifying high-
performance antibodies, thus advancing the development 
of potent therapeutic antibodies.

To fully leverage the advantages of high-throughput 
single-cell sequencing technology, implementing pre-
sequencing enrichment strategies is crucial for improv-
ing data quality and relevance. However, these strategies 
alone are inadequate. Equally important is the bioin-
formatics analysis of the downstream data produced by 
single-cell sequencing. Generally, data from single-cell 
immune repertoire sequencing must be processed to 
infer B-cell population structures and quantify detailed 
features [152]. Various tools have been developed for 
BCR analysis, including IgBLAST and IMGT/HighV-
QUEST for V(D)J gene annotation, as well as AbNum 
and AbRSA for antibody numbering [153–155]. Research 
indicates that various tools exhibit differing levels of per-
formance. For example, a study by Smakaj et al. identified 
MiXCR as the most efficient tool for sequence process-
ing when compared to alternatives such as IMGT/HighV-
QUEST and IgBLAST [156]. The large volume of 
sequences poses a significant processing challenge. Zong 
et al. recently introduced Abalign (http:// cao. labsh are. cn/ 
abali gn/), based on AbRSA, which significantly reduces 
the time required for high-throughput BCR data analysis 
from weeks to hours [157]. Additionally, machine learn-
ing and deep learning have extensive applications for 

http://cao.labshare.cn/abalign/
http://cao.labshare.cn/abalign/
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antibody data analysis. Researchers are developing arti-
ficial intelligence models that integrate these techniques 
with traditional bioinformatics methods to extract valua-
ble information from immunome libraries [158]. Bai et al. 
has reviewed major machine learning techniques and 
their applications, including computational predictions 
of antibody structures, antigen interfaces, and interac-
tions [159]. These advanced methods enhance data pro-
cessing efficiency and support high-throughput antibody 
production and screening. By leveraging these tools, 
researchers can rapidly identify and optimize therapeuti-
cally valuable antibodies, thus accelerating the antibody 
development process and advancing the discovery of 
novel antibody drugs. The application of these technolo-
gies is ushering in a new era in high-throughput antibody 
screening, making the transition from discovery to prod-
uct more efficient and precise.

Summary and outlook
High-throughput antibody screening has gained wide-
spread attention for its rapid, efficient, and scalable 
capabilities in antibody preparation. With continuous 
advancements in bioinformatics, structural biology, anti-
body engineering, artificial intelligence, and automation, 
these technologies are increasingly focusing on integra-
tion, automation, and intelligence. In this systematic 
review, we summarize current high-throughput antibody 
screening technologies, including antibody library dis-
play-based screening strategies, single-cell technologies, 

and single-cell sequencing. While several recent reviews 
have delved into various strategies for monoclonal anti-
body discovery, such as antibody display technologies, 
microfluidics, and single B cell technologies, they typi-
cally focus on individual strategies without offering a 
comprehensive comparison within a high-throughput 
framework [160–162]. In contrast, our review not only 
summarizes these strategies but also emphasizes how 
they integrate and work synergistically within modern 
high-throughput antibody discovery pipelines.

Table  1 provides a summary of the characteristics of 
antibody library technology, single B cell antibody pro-
duction, and single-cell sequencing in the context of 
antibody development. Overall, compared to the initial 
complex procedures that required multiple rounds of 
antibody library screening, the integration of automa-
tion and higher-throughput methods (such as microflu-
idics and NGS) has transformed antibody library display 
technology into a powerful platform for innovative drug 
discovery. However, it is important to note that the qual-
ity of the antibody display library has a significant impact 
on screening outcomes. In contrast, single-cell antibody 
preparation technology offers high-throughput screen-
ing capabilities, enabling the generation of naturally 
paired antibodies with both light and heavy chain vari-
able regions. This technology is known for its speed and 
high affinity, making it one of the primary methods for 
industrial-scale antibody production. Despite these 
advantages, there are still challenges, such as ensuring 

Table 1 Characteristics of different antibody high-throughput preparation techniques

Platform Throughput Automation Chain Pair Affinity Screening 
period

Potential 
improvements

Representative

Antibody Library Display Relatively low Low N Low 1–2 month Affinity of anti-
bodies;
Library quality

Phage Display 
[15]

Single B-cell 
sorting plat-
form

FACS Medium
(10, 000cell/s)

Low Y Relatively 
Lower

16–18 weeks Low screening 
specificity;
Difficult 
to screen 
for ASCs

BD FACSAria™ 
[89]

Microdroplet High
(millions cell/s)

Medium Y High 4−6 weeks False negatives;
Limited droplet 
volume

Cyto-Mine [105]

Microwell Medium
(1–200,000/
chip)

Low Y Medium The technology 
is complex;
contamination 
between cells

ISAAC [117]

Micro-Cham-
ber

Medium
(1–20, 000/
chip)

Hight Y High Expensive;
contamination 
between cells

Beacon® [125]

Single-cell sequencing 160,000cell/run Hight Y High 1–2 weeks An efficient 
method for ana-
lyzing sequenc-
ing data

10 × Genomic 
[144]
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the accuracy of positive clone screening, as well as the 
complexity and cost of the required instruments. Among 
these techniques, high-throughput single-cell sequenc-
ing stands out as the most efficient method for antibody 
preparation. It can provide gene expression profiles and 
immune repertoire data from a large number of single 
cells in a single run. However, the complexity and vol-
ume of immune repertoire sequencing data present sig-
nificant challenges. While existing bioinformatics tools, 
along with the integration of machine learning and deep 
learning techniques, offer promising solutions for data 
analysis and mining, there are still limitations. Further 
improvements and enhancements to algorithms, scoring 
functions, databases, and benchmarking tools are neces-
sary to better address these challenges.
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